Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(3)2021 03 23.
Article in English | MEDLINE | ID: mdl-33806845

ABSTRACT

Striatal dopamine (DA) release is critical for motivated actions and reinforcement learning, and is locally influenced at the level of DA axons by other striatal neurotransmitters. Here, we review a wealth of historical and more recently refined evidence indicating that DA output is inhibited by striatal γ-aminobutyric acid (GABA) acting via GABAA and GABAB receptors. We review evidence supporting the localisation of GABAA and GABAB receptors to DA axons, as well as the identity of the striatal sources of GABA that likely contribute to GABAergic modulation of DA release. We discuss emerging data outlining the mechanisms through which GABAA and GABAB receptors inhibit the amplitude as well as modulate the short-term plasticity of DA release. Furthermore, we highlight recent data showing that DA release is governed by plasma membrane GABA uptake transporters on striatal astrocytes, which determine ambient striatal GABA tone and, by extension, the tonic inhibition of DA release. Finally, we discuss how the regulation of striatal GABA-DA interactions represents an axis for dysfunction in psychomotor disorders associated with dysregulated DA signalling, including Parkinson's disease, and could be a novel therapeutic target for drugs to modify striatal DA output.


Subject(s)
Axons/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Signal Transduction , gamma-Aminobutyric Acid/metabolism , Animals , Humans , Receptors, GABA/metabolism
2.
Nat Commun ; 11(1): 4958, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009395

ABSTRACT

Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Down-Regulation , GABA Plasma Membrane Transport Proteins/metabolism , Parkinsonian Disorders/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Astrocytes/metabolism , Cell Membrane/metabolism , Disease Models, Animal , Glutamate Decarboxylase/metabolism , Mice, Inbred C57BL , Models, Biological , Nucleus Accumbens/metabolism
3.
Proteins ; 88(1): 113-126, 2020 01.
Article in English | MEDLINE | ID: mdl-31298435

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) channel is an ion channel responsible for chloride transport in epithelia and it belongs to the class of ABC transporters. The deletion of phenylalanine 508 (F508del) in CFTR is the most common mutation responsible for cystic fibrosis. Little is known about the effect of the mutation in the isolated nucleotide binding domains (NBDs), on dimer dynamics, ATP hydrolysis and even on nucleotide binding. Using molecular dynamics simulations of the human CFTR NBD dimer, we showed that F508del increases, in the prehydrolysis state, the inter-motif distance in both ATP binding sites (ABP) when ATP is bound. Additionally, a decrease in the number of catalytically competent conformations was observed in the presence of F508del. We used the subtraction technique to study the first 300 ps after ATP hydrolysis in the catalytic competent site and found that the F508del dimer evidences lower conformational changes than the wild type. Using longer simulation times, the magnitude of the conformational changes in both forms increases. Nonetheless, the F508del dimer shows lower C-α RMS values in comparison to the wild-type, on the F508del loop, on the residues surrounding the catalytic site and the portion of NBD2 adjacent to ABP1. These results provide evidence that F508del interferes with the NBD dynamics before and after ATP hydrolysis. These findings shed a new light on the effect of F508del on NBD dynamics and reveal a novel mechanism for the influence of F508del on CFTR.


Subject(s)
Adenosine Triphosphate/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Nucleotides/metabolism , Binding Sites , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Hydrolysis , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Protein Domains , Protein Multimerization , Sequence Deletion
4.
J Neurosci ; 39(6): 1058-1065, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30541909

ABSTRACT

Nigrostriatal dopamine (DA) is critical to action selection and learning. Axonal DA release is locally influenced by striatal neurotransmitters. Striatal neurons are principally GABAergic projection neurons and interneurons, and a small minority of other neurons are cholinergic interneurons (ChIs). ChIs strongly gate striatal DA release via nicotinic receptors (nAChRs) identified on DA axons. Striatal GABA is thought to modulate DA, but GABA receptors have not been documented conclusively on DA axons. However, ChIs express GABA receptors and are therefore candidates for potential mediators of GABA regulation of DA. We addressed whether striatal GABA and its receptors can modulate DA release directly, independently from ChI regulation, by detecting DA in striatal slices from male mice using fast-scan cyclic voltammetry in the absence of nAChR activation. DA release evoked by single electrical pulses in the presence of the nAChR antagonist dihydro-ß-erythroidine was reduced by GABA or agonists of GABAA or GABAB receptors, with effects prevented by selective GABA receptor antagonists. GABA agonists slightly modified the frequency sensitivity of DA release during short stimulus trains. GABA agonists also suppressed DA release evoked by optogenetic stimulation of DA axons. Furthermore, antagonists of GABAA and GABAB receptors together, or GABAB receptors alone, significantly enhanced DA release evoked by either optogenetic or electrical stimuli. These results indicate that striatal GABA can inhibit DA release through GABAA and GABAB receptors and that these actions are not mediated by cholinergic circuits. Furthermore, these data reveal that there is a tonic inhibition of DA release by striatal GABA operating through predominantly GABAB receptors.SIGNIFICANCE STATEMENT The principal inhibitory transmitter in the mammalian striatum, GABA, is thought to modulate striatal dopamine (DA) release, but definitive evidence for GABA receptors on DA axons is lacking. Striatal cholinergic interneurons regulate DA release via axonal nicotinic receptors (nAChRs) and also express GABA receptors, but they have not been eliminated as potentially critical mediators of DA regulation by GABA. Here, we found that GABAA and GABAB receptors inhibit DA release without requiring cholinergic interneurons. Furthermore, ambient levels of GABA inhibited DA release predominantly through GABAB receptors. These findings provide further support for direct inhibition of DA release by GABA receptors and reveal that striatal GABA operates a tonic inhibition on DA output that could critically influence striatal output.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Substantia Nigra/metabolism , Animals , Axons/metabolism , Cholinergic Antagonists/pharmacology , Dihydro-beta-Erythroidine/pharmacology , Electric Stimulation , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Optogenetics , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/metabolism , Receptors, GABA-A/drug effects , Receptors, GABA-B/drug effects , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...