Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36858139

ABSTRACT

Microplastics (MPs) pollution has increased the number of reports on the toxic effects on biota, especially aquatic organisms. Recently, studies highlighted changes in ion transport and concentration, especially Ca2+, in organisms exposed to MPs. For calcifying organisms, such as mollusks, Ca2+ homeostasis is critical for their shells construction. We investigated the effects of polyethylene (PE) MPs at 20 µg/L on biomineralization biomarkers (Ca2+ATPase, carbonic anhydrase, hemolymph [Ca2+], and shell regeneration) of the freshwater gastropod Pomacea canaliculata. Two experimental sets were performed: (1) animals in physiological condition and (2) animals with their shells excised. The results of the first set showed that within 24 h, the hemolymph [Ca2+] decreased, and the Ca2+ATPase activity increased in the mantle edge. For carbonic anhydrase (CA), the activity decreased in the gland and increased in the mantle. By 72 h, the hemolymph [Ca2+] had not changed, whereas both enzymes had increased in both tissues. In the second set, the hemolymph [Ca2+] increased after 72 h, whereas Ca2+ATPase activity decreased in both tissues. For AC, the opposite results were observed. At 120 h, calcium pumping was still reduced and CA values increased in the digestive gland. Additionally, MPs exposure increased the capacity of the gastropods to recover their shells. Based on this, our work provides novel data associating PE microplastic exposures (at 20 µg/L) and their potential to stimulate biomineralization enzymes of P. canaliculata, as well as increase shell regeneration in excised animal; a good prerogative for further investigations on both subjects that still lacks of more robust evidence.


Subject(s)
Carbonic Anhydrases , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics , Biomineralization , Snails/metabolism , Carbonic Anhydrases/metabolism , Fresh Water/chemistry , Adenosine Triphosphatases , Biomarkers , Water Pollutants, Chemical/toxicity
2.
Ecotoxicol Environ Saf ; 188: 109847, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31732268

ABSTRACT

Chlorothalonil is a fungicide present in antifouling paints and other formulations used in agriculture, although studies have shown this chemical to be toxic to fish species. To clarify the deleterious effects of chlorothalonil for these non-target organisms, the present study evaluated the toxic effects of this biocide for the estuarine guppy Poecilia vivipara in terms of an acute mortality test (96 h) and the analysis of biomarkers of oxidative stress, genotoxicity, and sperm quality. The LC50 calculated for P. vivipara was 40.8 µg/L of chlorothalonil. For the analysis of biomarkers, fish were exposed (96 h) to 1 and 10 µg/L of chlorothalonil. It was observed that chlorothalonil alters the levels of pro- and antioxidants towards oxidative stress. In the gills, a negative effect on total antioxidant capacity (ACAP) was detected, while there was a reduction in the activity of glutathione S-transferase (GST) in the liver. However, levels of glutathione (GSH) and the activity and glutamate-cysteine-ligase (GCL) increased in both tissues, as a possible detoxification response. Following chlorothalonil exposure, oxidative damage measured by lipoperoxidation (LPO) significantly increased at the cellular level only (red blood cells (RBCs) and sperm cells). An increase in fluidity of membranes, reactive oxygen species concentration and micronuclei (MNs) incidence were also seen in RBCs. In sperm cells, LPO increased, while membrane and mitochondrial functionality as well as sperm motility decreased. Based on these results, chlorothalonil can be considered as a toxic compound for fish, causing genotoxicity and affecting the RBCs physiology and the fertility of males of P. vivipara.


Subject(s)
Biomarkers/analysis , Nitriles/toxicity , Oxidative Stress/drug effects , Poecilia/physiology , Spermatozoa/drug effects , Water Pollutants, Chemical/toxicity , Animals , DNA Damage , Disinfectants/toxicity , Fungicides, Industrial/toxicity , Lethal Dose 50 , Male , Poecilia/metabolism , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...