Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1355950, 2024.
Article in English | MEDLINE | ID: mdl-39139296

ABSTRACT

The most recent progress in reconstructive therapy for the management of periodontitis and peri-implantitis bone defects has relied on the development of highly porous biodegradable bioaerogels for guided bone regeneration. The objective of this work was to evaluate in vitro the osteoinduction of periodontal-originating cells (human dental follicle mesenchymal cells, DFMSCs) promoted by a nano-hydroxyapatite/chitosan (nHAp/CS) bioaerogel, which was purified and sterilized by a sustainable technique (supercritical CO2). Moreover, the in vivo bone regeneration capacity of the nHAp/CS bioaerogel was preliminarily assessed as a proof-of-concept on a rat calvaria bone defect model. The quantification of DNA content of DFMSCs seeded upon nHAp/CS and CS scaffolds (control material) showed a significant increase from the 14th to the 21st day of culture. These results were corroborated through confocal laser scanning microscopy analysis (CLSM). Furthermore, the alkaline phosphatase (ALP) activity increased significantly on the 21st day, similarly for both materials. Moreover, the presence of nHAp promoted a significantly higher expression of osteogenic genes after 21 days when compared to CS scaffolds and control. CLSM images of 21 days of culture also showed an increased deposition of OPN over the nHAp/CS surface. The in vivo bone formation was assessed by microCT and histological analysis. The in vivo evaluation showed a significant increase in bone volume in the nHAp/CS test group when compared to CS and the empty control, as well as higher new bone formation and calcium deposition within the nHAp/CS structure. Overall, the present study showed that the nHAp/CS bioaerogel could offer a potential solution for periodontal and peri-implant bone regeneration treatments since the in vitro results demonstrated that it provided favorable conditions for DFMSC proliferation and osteogenic differentiation, while the in vivo outcomes confirmed that it promoted higher bone ingrowth.

2.
Braz J Microbiol ; 55(2): 1451-1463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656427

ABSTRACT

Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.


Subject(s)
Antifreeze Proteins , Bacteria , Freezing , Antarctic Regions , Antifreeze Proteins/metabolism , Antifreeze Proteins/chemistry , Antifreeze Proteins/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Islands , Phylogeny , Yeasts/genetics , Yeasts/classification , Yeasts/isolation & purification , Yeasts/metabolism , RNA, Ribosomal, 16S/genetics , Ecosystem
3.
Braz J Biol ; 84: e273999, 2024.
Article in English | MEDLINE | ID: mdl-38451628

ABSTRACT

The production of seedlings of the passion fruit tree, usually, is sexual, and the seeds are not uniform in the seedling emergence, and soaking treatments of seeds can provide faster and more uniform germination. It was aimed to study the action of plant growth regulators and the mobilization of reserves in the stages of soaking of yellow passion fruit seeds. The seeds were soaked for five hours in solutions containing plant growth regulators, in a completely randomized design, in a factorial 8 x 4, with four replications. The first factor corresponds to eight plant growth regulators: T1 - distilled water (control); T2 - 6-benzylaminepurine ​​500 mg L-1; T3 - 4-(3-indolyl) butyric acid 500 mg L-1; T4 - gibberellic acid 500 mg L-1; T5 - spermine 250 mg L-1; T6 - spermine 750 mg L-1; T7 - spermidine 750 mg L-1; T8 - spermidine 1250 mg L-1; and the second factor, to the four soaking times: zero, four, 72 and 120 hours, corresponding, respectively, to the dry seed, and to phases I, II, and III of the imbibition curve. It was evaluated the biochemical composition of seeds (lipids, soluble sugars and starch). The seeds showed accumulation of lipids in phase III; the content of soluble sugars increased in phase I and decreased in phase II. The starch content increased until the phase II and decreased in phase III. Starch is the main reserve in the seeds and the main source of energy used in phase III; soaking the seeds in polyamines generates an accumulation of lipids in the seeds and soaking in plant growth regulators increases the burning of starch.


Subject(s)
Passiflora , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Fruit , Spermidine , Spermine , Butyric Acid , Seedlings , Starch , Sugars
4.
Braz J Biol ; 83: e277437, 2024.
Article in English | MEDLINE | ID: mdl-38422256

ABSTRACT

The use of residues from coffee production to obtain biochar is a sustainable approach, which aims to minimize the environmental impact of these materials. In this study, the effect of adding coffee straw biochar on the physiological quality of lettuce and sorghum seeds was investigated. Thus, the objective of this work was to study the effect of adding different concentrations of coffee biochar in the substrate composition on the physiological quality of lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) seeds. The experimental design used was completely randomized, with five concentrations of biochar (0; 7.5; 15; 30 and 60%), conducted with four replications of 25 seeds. The use of biochar in the concentrations studied does not provide an increase in the average germination percentage and vigor of lettuce and sorghum seeds. The increase in the concentration of biochar caused less seed vigor, suggesting a toxic effect. For seed germination, there was no significant difference between lettuce and sorghum species, regardless of treatment. For the germination speed index, sorghum seeds have higher means, except for the treatment with the addition of 15% coffee straw biochar. Lettuce seeds have higher shoot length averages, except for treatment with 100% commercial substrate. The sorghum seeds have higher mean root length and dry mass than lettuce, regardless of the treatment.


Subject(s)
Charcoal , Germination , Sorghum , Coffee , Edible Grain , Lactuca , Seeds/physiology
5.
Clin. transl. oncol. (Print) ; 12(9): 639-642, sept. 2010. ilus, tab
Article in English | IBECS | ID: ibc-124310

ABSTRACT

The goal of this paper is to expose the clinical results and review of the literature of the treatment of spinal metastases with Stereotactic Body Radiation Therapy (SBRT) presenting one case. A spinal metastases from rectal cancer treated with a single dose of 18Gy is presented. The following physics aspects are exposed: Treatment volume, tumor volume marginal doses and maximum doses in organs at risk. Clinical and radiographic follow up is presented. Local control and pain relief after one year of follow up was excellent. In properly selected patients, the treatment of limited metastatic disease with SBRT appears to be feasible and safe (AU)


Subject(s)
Humans , Male , Radiosurgery/methods , Radiosurgery/trends , Radiosurgery , Rectal Neoplasms/pathology , Spinal Neoplasms/secondary , Spinal Neoplasms/surgery , Rectal Neoplasms/therapy , Rectum/pathology , Treatment Outcome , Spinal Neoplasms/pathology
6.
Genet. mol. res. (Online) ; 6(4): 799-820, 2007. ilus, tab, graf
Article in English | LILACS | ID: lil-520064

ABSTRACT

The construction of a realistic theoretical model of proteins is determinant for improving the computational simulations of their structural and functional aspects. Modeling proteins as a network of non-covalent connections between the atoms of amino acid residues has shown valuable insights into these macromolecules. The energy-related properties of protein structures are known to be very important in molecular dynamics. However, these same properties have been neglected when the protein structures are modeled as networks of atoms and amino acid residues. A new approach for the construction of protein models based on a network of atoms is presented. This method, based on interatomic interaction, takes into account the energy and geometric aspects of the protein structures that were not employed before, such as atomic occlusion inside the protein, the use of solvation, protein modeling and analysis, and the use of energy potentials to estimate the energies of interatomic non-covalent contacts. As a result, we achieved a more realistic network model of proteins. This model has the virtue of being more robust in face of different unknown variables that usually are arbitrarily estimated. We were able to determine the most connected residues of all the proteins studied, so that we are now in a better condition to study their structural role.


Subject(s)
Globins/chemistry , Proteins/chemistry , Thermodynamics , Amino Acid Sequence , Models, Chemical , Molecular Sequence Data , Protein Structure, Secondary
7.
Braz. j. med. biol. res ; 38(11): 1593-1601, Nov. 2005.
Article in English | LILACS | ID: lil-414713

ABSTRACT

Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da) with the inhibitors benzamidine and berenil at pH 8.0, 25°C and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05). Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp), a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively). The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.


Subject(s)
Animals , Cattle , Benzamidines/chemistry , Diminazene/analogs & derivatives , Trypsin Inhibitors/chemistry , Trypsin/chemistry , Water/chemistry , Calorimetry , Diminazene/chemistry , Hydrogen-Ion Concentration , Models, Chemical , Molecular Structure , Osmotic Pressure , Protein Binding , Protons , Thermodynamics
8.
Rev. AMRIGS ; 26(1): 45-9, 1982.
Article in Portuguese | LILACS | ID: lil-8627

ABSTRACT

Os autores relatam o caso de um paciente que por duas vezes foi vitima de ferimentos cardiacos com perfuracao de ventriculo esquerdo, tendo em ambas as ocasioes sido submetido a cirurgia de urgencia em um hospital de interior, sem equipamentos especializados ou medicos treinados em cirurgia cardiaca. Houve pleno sucesso em ambas as cirurgias e o paciente manteve-se vivendo normalmente apesar das sequelas remanescentes que, mais tarde, foram reveladas pela cineangiocoronariografia (obstrucao da coronaria descendente anterior esquerdo a aneurisma de ventriculo esquerdo)


Subject(s)
Adult , Humans , Male , Heart Injuries , Heart Ventricles , Wounds, Stab , Thoracic Surgery
SELECTION OF CITATIONS
SEARCH DETAIL