Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(3)2021 03 19.
Article in English | MEDLINE | ID: mdl-33808760

ABSTRACT

Phenylketonuria (PKU) is a genetic disease caused by deficient activity of human phenylalanine hydroxylase (hPAH) that, when untreated, can lead to severe psychomotor impairment. Protein misfolding is recognized as the main underlying pathogenic mechanism of PKU. Therefore, the use of stabilizers of protein structure and/or activity is an attractive therapeutic strategy for this condition. Here, we report that 3-hydroxyquinolin-2(1H)-one derivatives can act as protectors of hPAH enzyme activity. Electron paramagnetic resonance spectroscopy demonstrated that the 3-hydroxyquinolin-2(1H)-one compounds affect the coordination of the non-heme ferric center at the enzyme active-site. Moreover, surface plasmon resonance studies showed that these stabilizing compounds can be outcompeted by the natural substrate l-phenylalanine. Two of the designed compounds functionally stabilized hPAH by maintaining protein activity. This effect was observed on the recombinant purified protein and in a cellular model. Besides interacting with the catalytic iron, one of the compounds also binds to the N-terminal regulatory domain, although to a different location from the allosteric l-Phe binding site, as supported by the solution structures obtained by small-angle X-ray scattering.


Subject(s)
Phenylalanine Hydroxylase/metabolism , Quinolones/chemistry , Quinolones/pharmacology , Catalytic Domain , Electron Spin Resonance Spectroscopy , Fluorometry , HEK293 Cells , Humans , Metabolic Diseases/metabolism , Models, Molecular , Phenylalanine/metabolism , Phenylketonurias/metabolism , Surface Plasmon Resonance , Trypsin
2.
3.
Sci Rep ; 9(1): 13615, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541188

ABSTRACT

Human phenylalanine hydroxylase (hPAH) hydroxylates L-phenylalanine (L-Phe) to L-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms. Each hPAH monomer comprises an N-terminal regulatory, a central catalytic and a C-terminal oligomerisation domain. To maintain physiological L-Phe levels, hPAH employs complex regulatory mechanisms. Resting PAH adopts an auto-inhibited conformation where regulatory domains block access to the active site. L-Phe-mediated allosteric activation induces a repositioning of the regulatory domains. Since a structure of activated wild-type hPAH is lacking, we addressed hPAH L-Phe-mediated conformational changes and report the first solution structure of the allosterically activated state. Our solution structures obtained by small-angle X-ray scattering support a tetramer with distorted P222 symmetry, where catalytic and oligomerisation domains form a core from which regulatory domains protrude, positioning themselves close to the active site entrance in the absence of L-Phe. Binding of L-Phe induces a large movement and dimerisation of regulatory domains, exposing the active site. Activated hPAH is more resistant to proteolytic cleavage and thermal denaturation, suggesting that the association of regulatory domains stabilises hPAH.


Subject(s)
Phenylalanine Hydroxylase/metabolism , Phenylalanine Hydroxylase/ultrastructure , Catalytic Domain , Humans , Models, Molecular , Mutagenesis, Site-Directed , Phenylalanine/metabolism , Phenylketonurias/genetics , Phenylketonurias/physiopathology , Protein Binding , Protein Conformation , Scattering, Small Angle , Structure-Activity Relationship , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...