Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol ; 300: 109596, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34695723

ABSTRACT

In the present study, the lipid profile from the fat body and eggs of Rhipicephalus microplus was evaluated after exposure of engorged females to (E)-cinnamaldehyde and α-bisabolol, substances which have acaricide potential according to the literature. Engorged females collected from artificially infested cattle were immersed in a concentration of 10.0 mg/mL of each substance. Dissection of the female fat bodies was performed at different times (72 h and 120 h), for subsequent lipid extraction. In addition, on the fifth day of oviposition, were collected 50.0 ml50.0 mL aliquots of the egg mass of each treatment to perform the same lipid extraction procedure. To assess the lipid profiles, the samples were submitted to the thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GCMS) analysis. Furthermore, an in silico analysis was performed using PASS online® software to predict the possible molecular targets of (E)-cinnamaldehyde and α-bisabolol. As result, the main lipids identified from the fat body were triacylglycerides, fatty acids, and cholesterol, whereas, triacylglycerides (TAG), fatty acids (FA), and cholesterol (CHO) and cholesterol esters (CHOE), were identified in the eggs. The results also showed a significant increase (p < 0.05) of CHO in the fat body in the group exposed to (E)-cinnamaldehyde at 72 h (0.12 µg/fat body) and 120 h (0.46 µg/fat body), in the eggs from females treated with this same substance, there was a significant reduction (p < 0.05) in the amount of CHO (0.21 µg), compared to the water control group (0.45 µg). In the GCMS technique, 5 chemical classes were found, and variations were observed between these substances, mainly hydrocarbons and steroids, in the different groups, and (E)-cinnamaldehyde promoted the greatest changes. From the predictions of the in silico study, 38 and 20 targets were selected, respectively, which are mainly related to alterations in lipid metabolism, immune system and nervous system. This study provides the first report of changes in lipid metabolism of R. microplus exposed to (E)-cinnamaldehyde and α-bisabolol, as well as presenting possible activity on the molecular targets of these substances, expanding knowledge for the potential use of these compounds in the development of botanical acaricides.


Subject(s)
Acaricides , Rhipicephalus , Acaricides/pharmacology , Acrolein/analogs & derivatives , Animals , Cattle , Fat Body , Female , Larva , Lipids , Monocyclic Sesquiterpenes , Ovum
2.
Vet Parasitol ; 286: 109226, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32979684

ABSTRACT

This study aimed to investigate the acaricidal activity of (E)-cinnamaldehyde and α-bisabolol on populations of Rhipicephalus microplus with different resistance profiles. The adult immersion test (AIT) was used to characterize the susceptibility of tick populations (50 field populations) to synthetic acaricides: deltamethrin, amitraz, and chlorfenvinphos. The larval packet test (LPT) was used to determine the LC50 values for (E)-cinnamaldehyde (populations 1-25) and α-bisabolol (populations 26-50) at the concentrations of 0.31, 0.62, 1.25, 2.0, 2.5, 5.0 and 10.0 mg/mL. The susceptible strain Porto Alegre (POA) was used as a reference for calculating the resistance ratio (RR). In the AIT, deltamethrin did not show efficacy >95 % for any of the populations, whereas amitraz and chlorfenvinphos have presented efficacy >95 % for three (6 %) and 15 (30 %) populations, respectively. In the LPT, the LC50 values of (E)-cinnamaldehyde and α-bisabolol varied from 0.23 to 2.36 mg/mL and 1.57-3.01 mg/mL, respectively. The RR50 for (E)-cinnamaldehyde showed 20 (80 %) populations with values <1.0 and no population with values>1.5. As for α-bisabolol, only two (8%) populations have presented RR50 <1.0, whereas three (12 %) populations showed incipient resistance to this sesquiterpene (RR50 between 1.5 and 2.0). The results indicate that all studied tick populations showed low susceptibility to at least one of the commercial acaricides tested. In addition, comparison between the LC50 values of (E)-cinnamaldehyde and α-bisabolol for the field populations and the susceptible strain POA suggests that there is no cross-resistance of (E)-cinnamaldehyde and α-bisabolol for the tick populations evaluated, and that the differences in the LC50 values are due to population variations.


Subject(s)
Acaricides/pharmacology , Acrolein/analogs & derivatives , Drug Resistance , Monocyclic Sesquiterpenes/pharmacology , Rhipicephalus/drug effects , Acrolein/pharmacology , Animals , Brazil , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...