Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Andrology ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469955

ABSTRACT

INTRODUCTION: Despite the growing awareness of sexual dimorphism between males and females under pathological and physiological conditions, sex bias in biomedical research in animal models and patients is still present nowadays. The main objective of this work was to investigate sex differences in constitutive long non-coding RNA expression in spinal cord and skeletal muscle from wild-type mice. MATERIALS AND METHODS: To assess the influence of gender on long non-coding RNAs, we extracted RNA from tissues of male and female mice and analyzed the expression on nine long non-coding RNAs, selected for being among the most commonly studied or exerting an important role in muscle, at 50, 60, and 120 days of age. RESULTS AND DISCUSSION: We observed age- and tissue-dependent significant sex differences, being more prominent in skeletal muscle. We also studied the effect of sex steroid hormones on long non-coding RNA expression in vitro, noticing a modulation of long non-coding RNA levels upon estradiol and dihydrotestosterone treatment in muscle. CONCLUSIONS: Taken together, results obtained evidenced sex differences on constitutive long non-coding RNA expression and suggested an influence of steroid hormones complementary to other possible factors. These findings emphasize the importance of including both sexes in experimental design to minimize any potential sex bias.

2.
NPJ Parkinsons Dis ; 8(1): 126, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36202848

ABSTRACT

Mutations in the GBA gene that encodes the lysosomal enzyme ß-glucocerebrosidase (GCase) are a major genetic risk factor for Parkinson's disease (PD). In this study, we generated a set of differentiated and stable human dopaminergic cell lines that express the two most prevalent GBA mutations as well as GBA knockout cell lines as a in vitro disease modeling system to study the relationship between mutant GBA and the abnormal accumulation of α-synuclein. We performed a deep analysis of the consequences triggered by the presence of mutant GBA protein and the loss of GCase activity in different cellular compartments, focusing primarily on the lysosomal compartment, and analyzed in detail the lysosomal activity, composition, and integrity. The loss of GCase activity generates extensive lysosomal dysfunction, promoting the loss of activity of other lysosomal enzymes, affecting lysosomal membrane stability, promoting intralysosomal pH changes, and favoring the intralysosomal accumulation of sphingolipids and cholesterol. These local events, occurring only at a subcellular level, lead to an impairment of autophagy pathways, particularly chaperone-mediated autophagy, the main α-synuclein degradative pathway. The findings of this study highlighted the role of lysosomal function and lipid metabolism in PD and allowed us to describe a molecular mechanism to understand how mutations in GBA can contribute to an abnormal accumulation of different α-synuclein neurotoxic species in PD pathology.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685164

ABSTRACT

The development of new gene-editing technologies has fostered the need for efficient and safe vectors capable of encapsulating large nucleic acids. In this work we evaluate the synthesis of large-size plasmid-loaded PLGA nanoparticles by double emulsion (considering batch ultrasound and microfluidics-assisted methodologies) and magnetic stirring-based nanoprecipitation synthesis methods. For this purpose, we characterized the nanoparticles and compared the results between the different synthesis processes in terms of encapsulation efficiency, morphology, particle size, polydispersity, zeta potential and structural integrity of loaded pDNA. Our results demonstrate particular sensibility of large pDNA for shear and mechanical stress degradation during double emulsion, the nanoprecipitation method being the only one that preserved plasmid integrity. However, plasmid-loaded PLGA nanoparticles synthesized by nanoprecipitation did not show cell expression in vitro, possibly due to the slow release profile observed in our experimental conditions. Strong electrostatic interactions between the large plasmid and the cationic PLGA used for this synthesis may underlie this release kinetics. Overall, none of the methods evaluated satisfied all the requirements for an efficient non-viral vector when applied to large-size plasmid encapsulation. Further optimization or alternative synthesis methods are thus in current need to adapt PLGA nanoparticles as delivery vectors for gene editing therapeutic technologies.

4.
Br J Pharmacol ; 178(6): 1279-1297, 2021 03.
Article in English | MEDLINE | ID: mdl-32986860

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult onset disorder characterized by progressive neuromuscular junction (NMJ) dismantling and degeneration of motor neurons leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. Except for a minority of patients harbouring genetic mutations, the origin of most ALS cases remains elusive. Peripheral tissues, and particularly skeletal muscle, have lately demonstrated an active contribution to disease pathology attracting a growing interest for these tissues as therapeutic targets in ALS. In this sense, molecular mechanisms essential for cell and tissue homeostasis have been shown to be deregulated in the disease. These include muscle metabolism and mitochondrial activity, RNA processing, tissue-resident stem cell function responsible for muscle regeneration, and proteostasis that regulates muscle mass in adulthood. This review aims to compile scientific evidence that demonstrates the role of skeletal muscle in ALS pathology and serves as reference for development of novel therapeutic strategies targeting this tissue to delay disease onset and progression. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.


Subject(s)
Amyotrophic Lateral Sclerosis , Adult , Amyotrophic Lateral Sclerosis/drug therapy , Humans , Motor Neurons , Muscle, Skeletal , Neuromuscular Junction
5.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339180

ABSTRACT

Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.


Subject(s)
Cell-Free Nucleic Acids/blood , Gene Regulatory Networks , Neurodegenerative Diseases/blood , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Biomarkers/urine , Cell-Free Nucleic Acids/cerebrospinal fluid , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/urine , Humans , Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/urine
6.
Glia ; 66(8): 1752-1762, 2018 08.
Article in English | MEDLINE | ID: mdl-29624735

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons of the substantia nigra and the accumulation of protein aggregates, called Lewy bodies, where the most abundant is alpha-synuclein (α-SYN). Mutations of the gene that codes for α-SYN (SNCA), such as the A53T mutation, and duplications of the gene generate cases of PD with autosomal dominant inheritance. As a result of the association of inflammation with the neurodegeneration of PD, we analyzed whether overexpression of wild-type α-SYN (α-SYNWT ) or mutated α-SYN (α-SYNA53T ) are involved in the neuronal dopaminergic loss and inflammation process, along with the role of the chemokine fractalkine (CX3CL1) and its receptor (CX3CR1). We generated in vivo murine models overexpressing human α-SYNWT or α-SYNA53T in wild type (Cx3cr1+/+ ) or deficient (Cx3cr1-/- ) mice for CX3CR1 using unilateral intracerebral injection of adeno-associated viral vectors. No changes in CX3CL1 levels were observed by immunofluorescence or analysis by qRT-PCR in this model. Interestingly, the expression α-SYNWT induced dopaminergic neuronal death to a similar degree in both genotypes. However, the expression of α-SYNA53T produced an exacerbated neurodegeneration, enhanced in the Cx3cr1-/- mice. This neurodegeneration was accompanied by an increase in neuroinflammation and microgliosis as well as the production of pro-inflammatory markers, which were exacerbated in Cx3cr1-/- mice overexpressing α-SYNA53T . Furthermore, we observed that in primary microglia CX3CR1 was a critical factor in the modulation of microglial dynamics in response to α-SYNWT or α-SYNA53T . Altogether, our study reveals that CX3CR1 plays an essential role in neuroinflammation induced by α-SYNA53T .


Subject(s)
Chemokine CX3CL1/deficiency , Neurodegenerative Diseases/genetics , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Chemokine CX3CL1/genetics , Disease Models, Animal , Dopaminergic Neurons/metabolism , Mice, Knockout , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/genetics , Substantia Nigra/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...