Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Genome Biol Evol ; 16(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39058319

ABSTRACT

Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.


Subject(s)
Aquaporins , Eukaryota , Evolution, Molecular , Phylogeny , Eukaryota/genetics , Eukaryota/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Aquaporins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/chemistry
2.
Toxins (Basel) ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535816

ABSTRACT

Antimicrobial peptides (AMPs) are key molecules in the innate immune defence of vertebrates with rapid action, broad antimicrobial spectrum, and ability to evade pathogen resistance mechanisms. To date, amphibians are the major group of vertebrates from which most AMPs have been characterised, but most studies have focused on the bioactive skin secretions of anurans (frogs and toads). In this study, we have analysed the complete genomes and/or transcriptomes of eight species of caecilian amphibians (order Gymnophiona) and characterised the diversity, molecular evolution, and antimicrobial potential of the AMP repertoire of this order of amphibians. We have identified 477 candidate AMPs within the studied caecilian genome and transcriptome datasets. These candidates are grouped into 29 AMP families, with four corresponding to peptides primarily exhibiting antimicrobial activity and 25 potentially serving as AMPs in a secondary function, either in their entirety or after cleavage. In silico prediction methods were used to identify 62 of those AMPs as peptides with promising antimicrobial activity potential. Signatures of directional selection were detected for five candidate AMPs, which may indicate adaptation to the different selective pressures imposed by evolutionary arms races with specific pathogens. These findings provide encouraging support for the expectation that caecilians, being one of the least-studied groups of vertebrates, and with ~300 million years of separate evolution, are an underexplored resource of great pharmaceutical potential that could help to contest antibiotic resistance and contribute to biomedical advance.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Humans , Animals , Anura , Bufonidae , Evolution, Molecular
3.
Biology (Basel) ; 12(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37372131

ABSTRACT

Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP paralog members and classes; (2) determine the gene family birth and death process; (3) test for positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the tree branches and protein sites that were under positive selection were found in the AQP11 class. The detected sequence changes indicate modifications in molecular function and/or structure, which could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most promising candidates to have facilitated the processes of the water-to-land transition in amphibious fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the Gobiidae clade suggests a possible case of exaptation in this clade.

4.
Methods Protoc ; 5(2)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35314663

ABSTRACT

Molecular evolution analyses, such as detection of adaptive/purifying selection or ancestral protein reconstruction, typically require three inputs for a target gene (or gene family) in a particular group of organisms: sequence alignment, model of evolution, and phylogenetic tree. While modern advances in high-throughput sequencing techniques have led to rapid accumulation of genomic-scale data in public repositories and databases, mining such vast amount of information often remains a challenging enterprise. Here, we describe a comprehensive, versatile workflow aimed at the preparation of genome-extracted datasets readily available for molecular evolution research. The workflow involves: (1) fishing (searching and capturing) specific gene sequences of interest from taxonomically diverse genomic data available in databases at variable levels of annotation, (2) processing and depuration of retrieved sequences, (3) production of a multiple sequence alignment, (4) selection of best-fit model of evolution, and (5) solid reconstruction of a phylogenetic tree.

SELECTION OF CITATIONS
SEARCH DETAIL