Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(4): 1439-1444, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38193200

ABSTRACT

Dinuclear transition metal complexes with direct metal-metal interactions have the potential to generate unique reactivities and properties. Using asymmetric triazine ligands HN3tBuR (R = Et, iPr, nBu) featuring different alkyl substituents at 1,3-N centers, we report here the first rational synthesis of 'tetragonal lantern' type Fe(II) triazenides [Fe2(N3tBuR)4] [R = Et (1), iPr (2), nBu (3)] having an exceptionally short Fe-Fe distance (2.167-2.174 Å). Unlike the previously reported lantern structures with related amidinate or guanidinate ligands, highly air-sensitive 1-3 show a lower spin ground state, as indicated by Mössbauer, 1H NMR and DFT studies.

2.
Anal Chim Acta ; 1283: 341855, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37977769

ABSTRACT

Various everyday areas such as agriculture, wood industry, and wastewater treatment yield residual biowastes in large amounts that can be utilised for the purpose of sustainability and circular economy. Depending on the type of biowaste, they can be used to extract valuable chemicals or converted into alternative fuels. However, for efficient valorisation, these processes need to be monitored, for which thorough chemical characterisation can be highly beneficial. For this aim, two-dimensional (2D) chromatography can be favourable, as it has a higher peak capacity and sensitivity than one-dimensional (1D) chromatography. Therefore, here we review the studies published since 2010 involving gas chromatography (GC) or liquid chromatography (LC) as one of the dimensions. For the first time, we present the 2D chromatographic characterisation of various biowastes valorised for different purposes (chemical, fuels), together with future prospects and challenges. The aspects related to the 2D chromatographic analysis of polar, poorly volatile, and thermally unstable compounds are highlighted. In addition, it is demonstrated how different 2D setups can be applied for monitoring the biowaste conversion processes.

3.
J Chromatogr Sci ; 62(1): 8-20, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-36919660

ABSTRACT

Modulation is the key element of the comprehensive 2D gas chromatography separation. Forward fill/flush flow modulation is cost effective, robust and suitable for analysis of a wide range of samples. Even though this modulation system is well known, studies regarding its optimization are sparse. In this work, based on hundreds of experiments involving multiple column sets and modulation conditions, an approach was proposed that permits to facilitate the choice of the forward fill/flush flow modulation parameters. A score function was developed that allows to predict the forward fill/flush flow modulation process efficiency as judged by the modulated peak shape. The score function was based on the physical rules for optimized and quantitative forward fill/flush flow modulation proposed in our previous work, which state that the sum of the fill and flush modulation distances should be close to the modulation channel length and that the ratio of the flush and fill distances should be sufficiently high for efficient channel flushing. The score function was embedded in a freely available tool in the form of a forward fill/flush flow modulation calculator, which allows the user either to quickly check the relevancy of the modulation operating conditions or to obtain a suggestion for optimal modulation parameters.

4.
Small ; 19(26): e2208055, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36949498

ABSTRACT

Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y3 Al5 O12 :Ce3+ , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO4 -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported. The NPs are produced via a phosphoric acid- and extra yttrium acetate-assisted glycothermal synthesis route. Localization of phosphate and extra yttrium entities with respect to cerium centers in the YAG host has been determined by fine structural analysis techniques such as X-ray diffration (XRD), solid state nuclear magnetic resonance (NMR), and high resolution scanning transmission electron microscopy (HR-STEM), and shows distinct YPO4 and YAG phases. Finally, a correlation between the additive-induced physico-chemical environment change around cerium centers and the increasing PL performance has been suggested based on electron paramagnetic resonance (EPR), X-ray photoelectron spectrometry (XPS) data, and crystallographic simulation studies.

5.
ACS Appl Mater Interfaces ; 14(12): 14182-14192, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35293203

ABSTRACT

Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.

6.
J Sep Sci ; 44(22): 4141-4150, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510756

ABSTRACT

Comprehensive two-dimensional gas chromatography with vacuum ultraviolet detection results in sizable data for which noise and baseline drift ought to be corrected. As the data is acquired from multiple channels, preprocessing steps have to be applied to the data from all channels while being robust and rather fast with respect to the significant size of the data. In this study, we have described advanced data preprocessing techniques for such data which were not available in the existing commercial software solutions and which were dedicated primarily to noise and baseline correction. Noise reduction was performed on both the spectral and the time dimension. For the baseline correction, a morphological approach based on iterated convolutions and rectifier operations was proposed. On the spectral dimension, much less noisy and reliable spectra were obtained. From a quantitative point of view, mentioned preprocessing steps significantly improved the signal-to-noise ratio for the analyte detection (circa six times in this study). These preprocessing methods were integrated into the plugim! platform (https://www.plugim.fr/).

7.
J Sep Sci ; 44(20): 3849-3859, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34387030

ABSTRACT

Two-dimensional comprehensive gas chromatography is an established technique, employed for the characterization of complex samples. Broadband vacuum ultraviolet absorption spectroscopy detection has recently attracted a lot of attention as it is a universal detection technique characterized by good selectivity but also ease of use and amenability to coupling with two-dimensional comprehensive gas chromatography. Vacuum ultraviolet spectroscopy is particularly interesting due to the possibility of performing spectral decomposition for species that coelute in gas chromatography analysis. This detector has quantitative capabilities, however not all species absorb vacuum ultraviolet radiation the same. Unfortunately, vacuum ultraviolet relative response factors for compounds are not always available. Methods to rapidly measure vacuum ultraviolet relative response factors and generate a large database that would allow calibration free quantitative analysis of complex mixtures are therefore of great interest. In this work, a universal methodology that permits rapid measurement of vacuum ultraviolet relative response factors is reported. It involves flow modulated two-dimensional comprehensive gas chromatography with dual vacuum ultraviolet and flame ionization detection. In this set-up, flame ionization detection is employed as a quantitative reference allowing to scale vacuum ultraviolet responses of investigated compounds. This approach was validated by flow measurements and by comparing relative response factors obtained for model compounds with literature data.

8.
Indoor Air ; 31(3): 682-692, 2021 05.
Article in English | MEDLINE | ID: mdl-33020975

ABSTRACT

People spend approximately 80% of their time indoor, making the understanding of the indoor chemistry an important task for safety. The high surface-area-to-volume ratio characteristic of indoor environments leads the semi-volatile organic compounds (sVOCs) to deposit on the surfaces. Using a long path absorption photometer (LOPAP), this work investigates the formation of nitrous acid (HONO) through the photochemistry of adsorbed nitrate anions and its enhancement by the presence of furfural. Using a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), this work also investigates the surface emissions of VOCs from irradiated films of furfural and a mix of furfural and nitrate anions. Among the emitted VOCs, 2(5H)-furanone/2-Butenedial was observed at high concentrations, leading to maleic anhydride formation after UV irradiation. Moreover, the addition of potassium nitrate to the film formed NOx and HONO concentrations up to 10 ppb, which scales to ca. 4 ppb for realistic indoor conditions. This work helps to understand the high levels of HONO and NOx measured indoors.


Subject(s)
Air Pollution, Indoor , Nitrous Acid , Furaldehyde , Humans , Nitrogen Dioxide , Nitrogen Oxides , Photochemical Processes , Volatile Organic Compounds
9.
J Chromatogr A ; 1626: 461342, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32797823

ABSTRACT

GC × GC is an advanced separation technique allowing to achieve quantitative and qualitative characterization of complex samples. In order to perform two-dimensional separation, the system must provide suitable peak modulation which will direct short impulses of first column flow towards the second column. Forward fill/ flush differential flow modulation is a cost effective and no cryogen requiring approach which allows modulation over a wide range of analytes with very different boiling points. However, optimization of the flow modulation process can be difficult to understand and quantification performance might be compromised if the parameters of the modulation process are not properly set. Modulated peak shape can be a good indication of the efficiency of the modulation process, however it is not sufficient to guarantee good quantification. Different average velocities in the beginning and the end of the thermally programmed GC run may cause different efficiency of the modulation process in various parts of the chromatogram. The purpose of this work is to investigate quantitative performance of the forward/fill flush modulation and delineate parameters that determine the effectiveness of the modulation process and its ability to properly reflect the quantitative composition of the investigated sample.


Subject(s)
Chromatography, Gas/methods , Models, Theoretical , Paraffin/chemistry , Temperature
10.
Angew Chem Int Ed Engl ; 59(13): 5116-5122, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-31945254

ABSTRACT

The molecular-level structuration of two full photosystems into conjugated porous organic polymers is reported. The strategy of heterogenization gives rise to photosystems which are still fully active after 4 days of continuous illumination. Those materials catalyze the carbon dioxide photoreduction driven by visible light to produce up to three grams of formate per gram of catalyst. The covalent tethering of the two active sites into a single framework is shown to play a key role in the visible light activation of the catalyst. The unprecedented long-term efficiency arises from an optimal photoinduced electron transfer from the light harvesting moiety to the catalytic site as anticipated by quantum mechanical calculations and evidenced by in situ ultrafast time-resolved spectroscopy.

11.
J Sep Sci ; 43(1): 150-173, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31750981

ABSTRACT

Accelerated technological progress and increased complexity of interrogated matrices imposes a demand for fast, powerful, and resolutive analysis techniques. Gas chromatography has been for a long time a 'go-to' technique for the analysis of mixtures of volatile and semi-volatile compounds. Coupling of the several dimensions of gas chromatography separation has allowed to access a realm of improved separations in the terms of increased separation power and detection sensitivity. Especially comprehensive separations offer an insight into detailed sample composition for complex samples. Combining these advanced separation techniques with an informative detection system such as vacuum ultraviolet spectroscopy is therefore of great interest. Almost all molecules absorb the vacuum ultraviolet radiation and have distinct spectral features with compound classes exhibiting spectral signature similarities. Spectral information can be 'filtered' to extract the response in the most informative spectral ranges. Developed algorithms allow spectral mixture estimation of coeluting species. Vacuum ultraviolet detector follows Beer-Lambert law, with the possibility of calibrationless quantitation. The purpose of this article is to provide an overview of the features and specificities of gas chromatography-vacuum ultraviolet spectroscopy coupling which has gained interest since the recent introduction of a commercial vacuum ultraviolet detector. Potentials and limitations, relevant theoretical considerations, recent advances and applications are explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...