Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 1057375, 2022.
Article in English | MEDLINE | ID: mdl-36505459

ABSTRACT

It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua fascicularis) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis-specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis-specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.


Subject(s)
Chlamydia trachomatis , Leukocytes, Mononuclear , Animals , Female , Vaccination , Immunization , Primates , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Immunoglobulin G
2.
NPJ Vaccines ; 5(1): 7, 2020.
Article in English | MEDLINE | ID: mdl-31993218

ABSTRACT

The optimal protective immunity against Chlamydia trachomatis (C.t.) is still not fully resolved. One of the unresolved issues concerns the importance of resident immunity, since a recent study showed that optimal protection against a transcervical (TC) infection required genital tissue-resident memory T cells. An important question in the Chlamydia field is therefore if a parenteral vaccine strategy, inducing only circulating immunity primed at a nonmucosal site, should be pursued by Chlamydia vaccine developers. To address this question we studied the protective efficacy of a parenteral Chlamydia vaccine, formulated in the Th1/Th17 T cell-inducing adjuvant CAF01. We found that a parenteral vaccination induced significant protection against a TC infection and against development of chronic pathology. Protection correlated with rapid recruitment of Th1/Th17 T cells to the genital tract (GT), which efficiently prevented infection-driven generation of low quality Th1 or Th17 T cells, and instead maintained a pool of high quality multifunctional Th1/Th17 T cells in the GT throughout the infection. After clearance of the infection, a pool of these cells settled in the GT as tissue-resident Th1 and Th17 cells expressing CD69 but not CD103, CD49d, or CCR7, where they responded rapidly to a reinfection. These results show that a nonmucosal parenteral strategy inducing Th1 and Th17 T cells mediates protection against both infection with C.t. as well as development of chronic pathology, and lead to post-challenge protective tissue-resident memory immunity in the genital tract.

3.
Front Microbiol ; 10: 197, 2019.
Article in English | MEDLINE | ID: mdl-30800114

ABSTRACT

The development of a vaccine against genital chlamydia in women is advancing, and the evaluation of in situ immune responses following vaccination and challenge infections is crucial for development of a safe and protective vaccine. This study employs the sexually mature minipig model to characterize the genital in situ immune response to Chlamydia trachomatis infection in pigs previously immunized intramuscularly with UV-inactivated C. trachomatis serovar D (UV-SvD) adjuvanted/formulated with CAF01 adjuvant compared to a CAF01-alone control group. Pigs immunized with UV-SvD were significantly protected against vaginal challenge with C. trachomatis on day 3 post inoculation and showed significantly higher cervical infiltrations of approximately equal numbers of CD4+ and CD8+ T-cells, and IgG+ and IgA+ plasma cells compared to adjuvant-alone immunized controls. These immunological signatures correspond to findings in mice and are similar to those described in female chlamydia patients. This proves important potential for the pig model in elucidating immunological in situ signatures in future translational research in chlamydia vaccinology.

4.
Microbes Infect ; 19(6): 334-342, 2017 06.
Article in English | MEDLINE | ID: mdl-28189786

ABSTRACT

Advanced animal models, such as minipigs, are needed for the development of a globally requested human Chlamydia vaccine. Previous studies have shown that vaginal inoculation of sexually mature Göttingen minipigs with Chlamydia trachomatis resulted in an infection lasting only 3-5 days. The aim of this study was to evaluate the effect of targeting the upper porcine genital tract by transcervical and transabdominal intrauterine inoculation, compared to previously performed vaginal inoculation. Furthermore, we investigated the effect of the hormonal cycle, estrus vs. diestrus, on the establishment of a C. trachomatis infection in the minipig. Targeting the upper genital tract (transcervical inoculation) resulted in a longer lasting infection (at least 7 days) compared to vaginal inoculation (3-5 days). When comparing intrauterine inoculation during estrus and diestrus, inoculation during diestrus resulted in a longer lasting infection (at least 10 days) compared to estrus (3-5 days). Furthermore, we found a significant C. trachomatis specific IFN-γ response in pigs inoculated during estrus correlating with the accelerated clearance of infection in these pigs. These findings suggest that for implementation of an optimal model of C. trachomatis in minipigs, inoculation should bypass the cervix and preferable be performed during diestrus.


Subject(s)
Chlamydia Infections/immunology , Chlamydia trachomatis/pathogenicity , Diestrus , Uterus/microbiology , Vagina/microbiology , Animals , Disease Models, Animal , Estrus , Female , Immunoglobulin A/blood , Immunoglobulin G/blood , Interferon-gamma/blood , Swine , Swine, Miniature , Uterus/immunology , Vagina/immunology
5.
Front Immunol ; 8: 1652, 2017.
Article in English | MEDLINE | ID: mdl-29312283

ABSTRACT

There is an unmet need for a vaccine to control Chlamydia trachomatis (C.t.) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t. serovars (Svs) D-F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4+ T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4's from SvF (extVD4F*4), adjuvanted in CAF01. Hirep1 and extVD4F*4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4F*4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4F*4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t. Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t. and support the inclusion of neutralizing targets in chlamydia vaccines.

6.
BMC Vet Res ; 12(1): 200, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27614611

ABSTRACT

BACKGROUND: Chlamydia is one of the most common sexually transmitted diseases in humans worldwide, causing chronic lesions in the reproductive tract. Due to its often asymptomatic course, there is limited knowledge about the initial changes in the genital tract following infection. This study employs a novel sexually mature minipig model to investigate the initial histopathological changes following vaginal infection with Chlamydia trachomatis serovar D. RESULTS: A vaginal inoculation resulted in an infection primarily affecting the lower genital tract. The histopathological changes were characterized by a subepithelial inflammation consisting of neutrophils and mononuclear cells, followed by an increase in the number of plasma cells within the sub-epithelial stroma of the vagina. Detection of Chlamydia was associated with expression of cyclooxygenase-2 and interleukin-8 by superficial epithelial cells. The infection was self-limiting, with a duration of 7 days. CONCLUSION: Neutrophils, plasma cells and IL-8 have been linked with Chlamydia genital infection of unknown duration in human patients. In this study, we observe a similar pattern of local immune response/inflammation following experimental inoculation suggesting this porcine model shows promise as a model for translational chlamydia research.


Subject(s)
Chlamydia Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/pathology , Vagina/pathology , Animals , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia trachomatis/classification , Chlamydia trachomatis/physiology , Cyclooxygenase 2/metabolism , Epithelial Cells/enzymology , Epithelial Cells/pathology , Female , Interleukin-8/metabolism , Serogroup , Swine , Swine, Miniature , Vagina/microbiology
7.
Dev Comp Immunol ; 59: 57-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26801101

ABSTRACT

The pig is increasingly used as an advanced animal model of the genital tract in women and knowledge on the genital immune system is therefore needed. In this study, evaluation of vaginal smears revealed that almost no neutrophils or other leukocytes were present in the vaginal mucosa of prepubertal minipigs (n = 10). In sexually mature minipigs (n = 10), evaluated through an estrous cycle, there was an increase in number of mucosal neutrophils and other leukocytes during estrus. The level of total IgA on the vaginal mucosa increased during diestrus. The level of total IgG showed no significant changes through the cycle. The vaginal IgA level in the prepubertal minipigs was similar to the low estrus level in sexually mature minipigs, and the IgG level in prepubertal was similar to the stable level in the sexually mature minipigs.


Subject(s)
Estrous Cycle/immunology , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Interleukin-8/analysis , Leukocyte Count/veterinary , Mucous Membrane/cytology , Neutrophils/immunology , Vagina/cytology , Vagina/microbiology , Animals , Estrous Cycle/physiology , Female , Humans , Models, Animal , Mucous Membrane/immunology , Mucous Membrane/physiology , Swine , Swine, Miniature , Vagina/immunology
8.
Vet Res ; 46: 125, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26510418

ABSTRACT

Although the pig has been introduced as an advanced animal model of genital tract infections in women, almost no knowledge exists on the porcine vaginal microbiota, especially in barrier-raised Göttingen Minipigs. In women, the vaginal microbiota plays a crucial role for a healthy vaginal environment and the fate of sexually transmitted infections such as Chlamydia trachomatis infections. Therefore, knowledge on the vaginal microbiota is urgently needed for the minipig model. The aim of this study was to characterize the microbiota of the anterior vagina by 16 s rRNA gene sequencing in prepubertal and sexually mature Göttingen Minipigs during an estrous cycle. The dominating phyla in the vaginal microbiota consisted of Firmicutes, Proteobacteria, Actinobacteria, Bacteriodetes and Tenericutes. The most abundant bacterial families were Enterobacteriaceae, unclassified families from Gammaproteobacteria, Clostridiales Family XI Incertae Sedis, Paenibacillaceae, Lactobacillaceae, Ruminococcaceae and Syntrophaceae. We found a higher abundance of Lactobacillaceae in the prepubertal Göttingen Minipigs compared to sexually mature non-pregnant Göttingen Minipigs. However, correlation tests and diversity parameters revealed a very stable vaginal microbiota in the Göttingen Minipigs, both before and after sexual maturity and on different days throughout an estrous cycle. The vaginal microbiota in Göttingen Minipigs was not dominated by lactobacilli, as it is in women and according to our results the minipig vaginal microbiota is very stable, in opposite to women. These differences should be considered when using the minipig as a model of the genital tract in women.


Subject(s)
Microbiota , Swine, Miniature/microbiology , Vagina/microbiology , Animals , Estrous Cycle , Female , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/veterinary , Sexual Maturation , Swine
9.
Vet Res ; 46: 116, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26411309

ABSTRACT

Sexually transmitted diseases constitute major health issues and their prevention and treatment continue to challenge the health care systems worldwide. Animal models are essential for a deeper understanding of the diseases and the development of safe and protective vaccines. Currently a good predictive non-rodent model is needed for the study of genital chlamydia in women. The pig has become an increasingly popular model for human diseases due to its close similarities to humans. The aim of this review is to compare the porcine and human female genital tract and associated immune system in the perspective of genital Chlamydia infection. The comparison of women and sows has shown that despite some gross anatomical differences, the structures and proportion of layers undergoing cyclic alterations are very similar. Reproductive hormonal cycles are closely related, only showing a slight difference in cycle length and source of luteolysing hormone. The epithelium and functional layers of the endometrium show similar cyclic changes. The immune system in pigs is very similar to that of humans, even though pigs have a higher percentage of CD4(+)/CD8(+) double positive T cells. The genital immune system is also very similar in terms of the cyclic fluctuations in the mucosal antibody levels, but differs slightly regarding immune cell infiltration in the genital mucosa - predominantly due to the influx of neutrophils in the porcine endometrium during estrus. The vaginal flora in Göttingen Minipigs is not dominated by lactobacilli as in humans. The vaginal pH is around 7 in Göttingen Minipigs, compared to the more acidic vaginal pH around 3.5-5 in women. This review reveals important similarities between the human and porcine female reproductive tracts and proposes the pig as an advantageous supplementary model of human genital Chlamydia infection.


Subject(s)
Chlamydia Infections/immunology , Chlamydia/physiology , Genitalia, Female/immunology , Animals , Chlamydia Infections/microbiology , Disease Models, Animal , Female , Genitalia, Female/microbiology , Humans , Swine , Swine, Miniature
10.
Front Immunol ; 6: 628, 2015.
Article in English | MEDLINE | ID: mdl-26734002

ABSTRACT

International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...