Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 193(10): 1455-1467, 2023 10.
Article in English | MEDLINE | ID: mdl-37422149

ABSTRACT

The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Butyrates/metabolism , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Inflammation/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy
2.
Sci Rep ; 11(1): 17815, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497333

ABSTRACT

Toll-like receptors (TLRs) in the liver compartment have repeatedly been attributed to the development of non-alcoholic fatty liver disease (NAFLD). Knowledge on TLR expression in blood cells and their relation to intestinal microbiota and NAFLD development is limited. Here, we determined TLR expression patterns in peripheral blood mononuclear cells (PBMCs) of NAFLD patients and controls, their relation to intestinal microbiota and the impact of TLRs found altered in NAFLD development. Markers of intestinal permeability in blood and TLR mRNA expression in PBMCs were determined in 37 NAFLD patients and 15 age-matched healthy controls. Fecal microbiota composition was evaluated in 21 NAFLD patients and 9 controls using 16S rRNA gene amplicon sequencing. Furthermore, TLR1-/- and C57BL/6 mice (n = 5-6/group) were pair-fed a liquid control or a fat-, fructose- and cholesterol-rich diet. Intestinal microbiota composition and markers of intestinal permeability like zonulin and bacterial endotoxin differed significantly between groups with the latter markers being significantly higher in NAFLD patients. Expression of TLR1-8 and 10 mRNA was detectable in PBMCs; however, only TLR1 expression, being higher in NAFLD patients, were significantly positively correlated with the prevalence of Holdemanella genus while negative correlations were found with Gemmiger and Ruminococcus genera. TLR1-/- mice were significantly protected from the development of diet-induced NAFLD when compared to wild-type mice. While intestinal microbiota composition and permeability differed significantly between NAFLD patients and healthy subjects, in PBMCs, only TLR1 expression differed between groups. Still, targeting these alterations might be a beneficial approach in the treatment of NAFLD in some patients.


Subject(s)
Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 1/metabolism , Adiponectin/blood , Adult , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Disease Models, Animal , Female , Gastrointestinal Microbiome/physiology , Haptoglobins/metabolism , Humans , Insulin Resistance/physiology , Intestinal Mucosa/metabolism , Leptin/blood , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Permeability , Protein Precursors/metabolism
3.
J Hepatol ; 69(3): 676-686, 2018 09.
Article in English | MEDLINE | ID: mdl-29802947

ABSTRACT

BACKGROUND & AIMS: Macrophages contribute to liver disease, but their role in cholestatic liver injury, including primary sclerosing cholangitis (PSC), is unclear. We tested the hypothesis that macrophages contribute to the pathogenesis of, and are therapeutic targets for, PSC. METHODS: Immune cell profile, hepatic macrophage number, localization and polarization, fibrosis, and serum markers of liver injury and cholestasis were measured in an acute (intrabiliary injection of the inhibitor of apoptosis antagonist BV6) and chronic (Mdr2-/- mice) mouse model of sclerosing cholangitis (SC). Selected observations were confirmed in liver specimens from patients with PSC. Because of the known role of the CCR2/CCL2 axis in monocyte/macrophage chemotaxis, therapeutic effects of the CCR2/5 antagonist cenicriviroc (CVC), or genetic deletion of CCR2 (Ccr2-/- mice) were determined in BV6-injected mice. RESULTS: We found increased peribiliary pro-inflammatory (M1-like) and alternatively-activated (M2-like) monocyte-derived macrophages in PSC compared to normal livers. In both SC models, genetic profiling of liver immune cells identified a predominance of monocytes/macrophages; immunohistochemistry confirmed peribiliary monocyte-derived macrophage recruitment (M1>M2-polarized), which paralleled injury onset and was reversed upon resolution in acute SC mice. PSC, senescent and BV6-treated human cholangiocytes released monocyte chemoattractants (CCL2, IL-8) and macrophage-activating factors in vitro. Pharmacological inhibition of monocyte recruitment by CVC treatment or CCR2 genetic deletion attenuated macrophage accumulation, liver injury and fibrosis in acute SC. CONCLUSIONS: Peribiliary recruited macrophages are a feature of both PSC and acute and chronic murine SC models. Pharmacologic and genetic inhibition of peribiliary macrophage recruitment decreases liver injury and fibrosis in mouse SC. These observations suggest monocyte-derived macrophages contribute to the development of SC in mice and in PSC pathogenesis, and support their potential as a therapeutic target. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is an inflammatory liver disease which often progresses to liver failure. The cause of the disease is unclear and therapeutic options are limited. Therefore, we explored the role of white blood cells termed macrophages in PSC given their frequent contribution to other human inflammatory diseases. Our results implicate macrophages in PSC and PSC-like diseases in mice. More importantly, we found that pharmacologic inhibition of macrophage recruitment to the liver reduces PSC-like liver injury in the mouse. These exciting observations highlight potential new strategies to treat PSC.


Subject(s)
Chemokine CCL2/metabolism , Cholangitis, Sclerosing , Imidazoles/pharmacology , Liver Cirrhosis , Macrophages , Receptors, CCR2/metabolism , Receptors, CCR5/metabolism , Animals , CCR5 Receptor Antagonists/pharmacology , Chemotaxis/drug effects , Chemotaxis/immunology , Cholangitis, Sclerosing/drug therapy , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/pathology , Disease Models, Animal , Liver/immunology , Liver/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Sulfoxides , Treatment Outcome
4.
Hepatology ; 68(2): 561-573, 2018 08.
Article in English | MEDLINE | ID: mdl-29406621

ABSTRACT

Cholangiocytes normally express primary cilia, a multisensory organelle that detects signals from the cellular environment. Cilia are significantly reduced in cholangiocarcinoma (CCA) by a mechanism involving overexpression of histone deacetylase 6 (HDAC6). Despite HDAC6 overexpression in CCA, we found no differences in its mRNA level, suggesting a posttranscriptional regulation, possibly involving microRNAs (miRNAs). Here, we describe that at least two HDAC6-targeting miRNAs, miR-433 and miR-22, are down-regulated in CCA both in vitro and in vivo. Experimental restoration of these miRNAs in CCA cells reduced HDAC6 expression, induced ciliary restoration, and decreased the malignant phenotype. Furthermore, in contrast to the mature forms, levels of precursor forms of these miRNAs were higher in CCA compared to normal cholangiocytes and accumulated in the nuclei, suggesting a defective nuclear export. We assessed the expression of Exportin-5, the protein responsible for transporting miRNA precursors out of the nucleus, and found it to be reduced by 50% in CCA compared to normal cholangiocytes. Experimental overexpression of Exportin-5 in CCA cells restored precursor and mature forms of these miRNAs to normal levels, inducing a decrease in the expression of HDAC6 and a decrease in the malignant phenotype. Conversely, short hairpin RNA (shRNA) depletion of Exportin-5 in normal cholangiocytes resulted in increased nuclear retention of precursor miRNAs, decreased mature miRNAs, increased cell proliferation, and shorter cilia. CONCLUSION: These data suggest that down-regulated Exportin-5 impairs the nuclear export of miR-433 and miR-22 precursor forms, causing a decrease in levels of mature miR-433 and miR-22 forms, and leading to overexpression of HDAC6 and ciliary loss in CCA. (Hepatology 2018).


Subject(s)
Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/metabolism , Histone Deacetylase 6/metabolism , MicroRNAs/metabolism , Bile Duct Neoplasms/pathology , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/pathology , Cilia , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Karyopherins/metabolism , Real-Time Polymerase Chain Reaction
5.
Hepatology ; 67(3): 1088-1108, 2018 03.
Article in English | MEDLINE | ID: mdl-29023824

ABSTRACT

Polycystic liver disease (PLD) is a group of genetic disorders with limited treatment options and significant morbidity. Hepatic cysts arise from cholangiocytes exhibiting a hyperproliferative phenotype. Considering that hyperproliferation of many cell types is associated with alterations in autophagy, we hypothesized that autophagy is altered in PLD cholangiocytes, contributes to hepatic cystogenesis, and might represent a potential therapeutic target. We employed functional pathway cluster analysis and next-generation sequencing, transmission electron microscopy, immunofluorescence confocal microscopy, and western blotting to assess autophagy in human and rodent PLD cholangiocytes. A three-dimensional culture model was used to study the effects of molecular and pharmacologic inhibition of autophagy on hepatic cystogenesis in vitro, and the polycystic kidney disease-specific rat, an animal model of PLD, to study the effects of hydroxychloroquine, a drug that interferes with the autophagy pathway, on disease progression in vivo. Assessment of the transcriptome of PLD cholangiocytes followed by functional pathway cluster analysis revealed that the autophagy-lysosomal pathway is one of the most altered pathways in PLD. Direct evaluation of autophagy in PLD cholangiocytes both in vitro and in vivo showed increased number and size of autophagosomes, lysosomes, and autolysosomes; overexpression of autophagy-related proteins (Atg5, Beclin1, Atg7, and LC3); and enhanced autophagic flux associated with activation of the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway. Molecular and pharmacologic intervention in autophagy with ATG7 small interfering RNA, bafilomycin A1 , and hydroxychloroquine reduced proliferation of PLD cholangiocytes in vitro and growth of hepatic cysts in three-dimensional cultures. Hydroxychloroquine also efficiently inhibited hepatic cystogenesis in the polycystic kidney disease-specific rat. CONCLUSION: Autophagy is increased in PLD cholangiocytes, contributes to hepatic cystogenesis, and represents a potential therapeutic target for disease treatment. (Hepatology 2018;67:1088-1108).


Subject(s)
Autophagy/drug effects , Bile Ducts/cytology , Cysts/physiopathology , Liver Diseases/physiopathology , Liver/pathology , Animals , Autophagy/genetics , Autophagy/physiology , Bile Ducts/metabolism , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , Cluster Analysis , Cysts/drug therapy , Cysts/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epithelial Cells/metabolism , Female , Fluorescent Antibody Technique , High-Throughput Nucleotide Sequencing/methods , Humans , Hydroxychloroquine/pharmacology , Liver/metabolism , Liver Diseases/metabolism , Male , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley , Signal Transduction , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1220-1231, 2018 04.
Article in English | MEDLINE | ID: mdl-28716705

ABSTRACT

Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Subject(s)
Bile Duct Diseases/physiopathology , Bile Ducts/physiopathology , Epithelial Cells/pathology , Signal Transduction/physiology , Animals , Apoptosis/physiology , Bile/metabolism , Bile Acids and Salts/metabolism , Bile Ducts/cytology , Cell Proliferation/physiology , Cellular Senescence/physiology , Cilia/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , MicroRNAs/metabolism
7.
FEMS Microbiol Lett ; 363(12)2016 06.
Article in English | MEDLINE | ID: mdl-27190155

ABSTRACT

Plant lectins, which are proteins/glycoproteins present in a wide range of vegetables, fruits, cereals and beans, are resistant to digestive enzymes and food cooking temperatures. They bind reversibly to specific glycosidic residues expressed on the membrane of intestinal epithelial cells (IEC) and cause anti-nutritional effects in humans and animals. Soybean lectin (SBA) has been detected in poultry diets, and its ability to bind to the intestinal epithelium has been reported. The development of new methods for removing SBA from feeds or to prevent interaction with the intestinal mucosa is of interest. In this study, the in vitro cytotoxicity of SBA on IEC of chicks was demonstrated for the first time. The LD50, assessed after 2 h exposure of IEC to SBA, was 6.13 µg mL(-1) The ability of Bifidobacterium infantis CRL1395 to bind SBA on the bacterial envelope was confirmed, and prevention of IEC cytotoxicity by lectin removal was demonstrated. Safety of B. infantis CRL1395, resistance to gastrointestinal stress and adhesion were also determined. It was concluded that the early administration of B. infantis CRL1395 to chicks would effectively reduce the toxicity of SBA. Besides, it would favour the colonization of the gut with a beneficial microbiota.


Subject(s)
Bifidobacterium longum subspecies infantis/metabolism , Cytotoxins/pharmacology , Epithelial Cells/drug effects , Intestinal Mucosa/drug effects , Plant Lectins/toxicity , Soybean Proteins/toxicity , Animals , Chickens , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Intestines/microbiology , Lethal Dose 50 , Plant Lectins/metabolism , Probiotics , Soybean Proteins/metabolism
8.
Can J Microbiol ; 61(1): 32-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25438612

ABSTRACT

The intestinal microbiota would be implicated in pathology associated with celiac disease caused by an abnormal immune system reaction against gluten present in cereal grains. The objectives of this work were to detect through basic methods the changes in the composition of the most common genera of bacteria from the intestinal microbiota of symptom-free celiac disease children with a gluten-free diet compared with healthy children from Tucumán and to select lactobacilli (Lb) strains with probiotic potential from the feces of healthy children. Results demonstrated that the feces of celiac children with a gluten-free diet showed significantly lower counts of Lb (P < 0.05) compared with healthy children, while enterobacteria tended to increase in celiac children. On the basis of these results, isolation of some Lb from the feces of healthy children was carried out. Thus, 5 Lb strains were selected because of their high resistance percentages to gastrointestinal tract conditions. In addition, their autoaggregation and hydrophobicity properties were evaluated: Lactobacillus rhamnosus (LC4) showed the highest percentage of autoaggregation while Lactobacillus paracasei (LC9) showed high hydrophobicity. Based on these results, LC4 and LC9 were selected, and their use as potential probiotic strains to improve signs and symptoms associated with celiac disease is discussed. This is the first study performed in Argentina concerning the relationship between intestinal microbiota and celiac disease in celiac children with a gluten-free diet. In addition, the development of a probiotic food addressed towards celiac patients and designed with Lb isolated from the feces of healthy children from our province represents a promising alternative to improve the quality of life of celiac patients.


Subject(s)
Bacteria/isolation & purification , Celiac Disease/microbiology , Gastrointestinal Microbiome , Lactobacillus/growth & development , Probiotics/isolation & purification , Adolescent , Argentina , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Celiac Disease/diet therapy , Celiac Disease/metabolism , Child , Child, Preschool , Diet, Gluten-Free , Feces/microbiology , Female , Humans , Lactobacillus/classification , Male , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...