Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Photochem Photobiol ; 91(5): 1123-32, 2015.
Article in English | MEDLINE | ID: mdl-26172037

ABSTRACT

The blue-light (BL) absorbing protein Xcc-LOV from Xanthomonas citri subsp. citri is composed of a LOV-domain, a histidine kinase (HK) and a response regulator. Spectroscopic characterization of Xcc-LOV identified intermediates and kinetics of the protein's photocycle. Measurements of steady state and time-resolved fluorescence allowed determination of quantum yields for triplet (ΦT  = 0.68 ± 0.03) and photoproduct formation (Φ390  = 0.46 ± 0.05). The lifetime for triplet decay was determined as τT  = 2.4-2.8 µs. Fluorescence of tryptophan and tyrosine residues was unchanged upon light-to-dark conversion, emphasizing the absence of significant conformational changes. Photochemistry was blocked upon cysteine C76 (C76S) mutation, causing a seven-fold longer lifetime of the triplet state (τT  = 16-18.5 µs). Optoacoustic spectroscopy yielded the energy content of the triplet state. Interestingly, Xcc-LOV did not undergo the volume contraction reported for other LOV domains within the observation time window, although the back-conversion into the dark state was accompanied by a volume expansion. A radioactivity-based enzyme function assay revealed a larger HK activity in the lit than in the dark state. The C76S mutant showed a still lower enzyme function, indicating the dark state activity being corrupted by a remaining portion of the long-lived lit state.


Subject(s)
Light , Photoreceptors, Microbial/metabolism , Protein Kinases/physiology , Xanthomonas/physiology , Histidine Kinase , Oxygen/chemistry
2.
PLoS One ; 7(6): e38226, 2012.
Article in English | MEDLINE | ID: mdl-22675525

ABSTRACT

Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease.


Subject(s)
Bacterial Proteins/metabolism , Citrus sinensis/microbiology , Host-Pathogen Interactions/physiology , Xanthomonas axonopodis/growth & development , Xanthomonas axonopodis/physiology , Amino Acid Sequence , Bacterial Adhesion , Bacterial Proteins/chemistry , Biofilms , Colony Count, Microbial , Computational Biology , Gene Deletion , Genes, Bacterial/genetics , Histidine Kinase , Molecular Sequence Data , Movement/physiology , Photochemical Processes , Plant Diseases/microbiology , Plant Leaves/microbiology , Polysaccharides, Bacterial/biosynthesis , Protein Kinases/metabolism , Recombinant Proteins/metabolism , Xanthomonas axonopodis/enzymology , Xanthomonas axonopodis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL