Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Biol Sci ; 291(2023): 20240149, 2024 May.
Article in English | MEDLINE | ID: mdl-38808447

ABSTRACT

Developing robust professional networks can help shape the trajectories of early career scientists. Yet, historical inequities in science, technology, engineering, and mathematics (STEM) fields make access to these networks highly variable across academic programmes, and senior academics often have little time for mentoring. Here, we illustrate the success of a virtual Laboratory Meeting Programme (LaMP). In this programme, we matched students (mentees) with a more experienced scientist (mentors) from a research group. The mentees then attended the mentors' laboratory meetings during the academic year with two laboratory meetings specifically dedicated to the mentee's professional development. Survey results indicate that mentees expanded their knowledge of the hidden curriculum as well as their professional network, while only requiring a few extra hours of their mentor's time over eight months. In addition, host laboratories benefitted from mentees sharing new perspectives and knowledge in laboratory meetings. Diversity of the mentees was significantly higher than the mentors, suggesting that the programme increased the participation of traditionally under-represented groups. Finally, we found that providing a stipend was very important to many mentees. We conclude that virtual LaMPs can be an inclusive and cost-effective way to foster trainee development and increase diversity within STEM fields with little additional time commitment.


Subject(s)
Engineering , Mentors , Science , Technology , Engineering/education , Humans , Science/education , Laboratories , Mathematics , Mentoring
2.
Evol Lett ; 8(3): 331-339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818416

ABSTRACT

As climate change causes the environment to shift away from the local optimum that populations have adapted to, fitness declines are predicted to occur. Recently, methods known as genomic offsets (GOs) have become a popular tool to predict population responses to climate change from landscape genomic data. Populations with a high GO have been interpreted to have a high "genomic vulnerability" to climate change. GOs are often implicitly interpreted as a fitness offset, or a change in fitness of an individual or population in a new environment compared to a reference. However, there are several different types of fitness offset that can be calculated, and the appropriate choice depends on the management goals. This study uses hypothetical and empirical data to explore situations in which different types of fitness offsets may or may not be correlated with each other or with a GO. The examples reveal that even when GOs predict fitness offsets in a common garden experiment, this does not necessarily validate their ability to predict fitness offsets to environmental change. Conceptual examples are also used to show how a large GO can arise under a positive fitness offset, and thus cannot be interpreted as a population vulnerability. These issues can be resolved with robust validation experiments that can evaluate which fitness offsets are correlated with GOs.

3.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37186213

ABSTRACT

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , Genomics/methods , Sequence Analysis, DNA , Polymorphism, Genetic , Genome Size
4.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942504

ABSTRACT

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Subject(s)
Chromosome Inversion , Chromosomes , Humans , Heterozygote , Evolution, Molecular
5.
Proc Natl Acad Sci U S A ; 120(12): e2220313120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36917658

ABSTRACT

Multivariate climate change presents an urgent need to understand how species adapt to complex environments. Population genetic theory predicts that loci under selection will form monotonic allele frequency clines with their selective environment, which has led to the wide use of genotype-environment associations (GEAs). This study used a set of simulations to elucidate the conditions under which allele frequency clines are more or less likely to evolve as multiple quantitative traits adapt to multivariate environments. Phenotypic clines evolved with nonmonotonic (i.e., nonclinal) patterns in allele frequencies under conditions that promoted unique combinations of mutations to achieve the multivariate optimum in different parts of the landscape. Such conditions resulted from interactions among landscape, demography, pleiotropy, and genetic architecture. GEA methods failed to accurately infer the genetic basis of adaptation under a range of scenarios due to first principles (clinal patterns did not evolve) or statistical issues (clinal patterns evolved but were not detected due to overcorrection for structure). Despite the limitations of GEAs, this study shows that a back-transformation of multivariate ordination can accurately predict individual multivariate traits from genotype and environmental data regardless of whether inference from GEAs was accurate. In addition, frameworks are introduced that can be used by empiricists to quantify the importance of clinal alleles in adaptation. This research highlights that multivariate trait prediction from genotype and environmental data can lead to accurate inference regardless of whether the underlying loci display clinal or nonmonotonic patterns.


Subject(s)
Acclimatization , Adaptation, Physiological , Phenotype , Gene Frequency , Genotype , Adaptation, Physiological/genetics , Selection, Genetic
6.
Mar Biotechnol (NY) ; 25(1): 174-191, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36622459

ABSTRACT

The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , DNA Copy Number Variations , Genome , Genomics , Genotype , Polymorphism, Single Nucleotide
7.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210200, 2022 08.
Article in English | MEDLINE | ID: mdl-35694752

ABSTRACT

Across many species where inversions have been implicated in local adaptation, genomes often evolve to contain multiple, large inversions that arise early in divergence. Why this occurs has yet to be resolved. To address this gap, we built forward-time simulations in which inversions have flexible characteristics and can invade a metapopulation undergoing spatially divergent selection for a highly polygenic trait. In our simulations, inversions typically arose early in divergence, captured standing genetic variation upon mutation, and then accumulated many small-effect loci over time. Under special conditions, inversions could also arise late in adaptation and capture locally adapted alleles. Polygenic inversions behaved similarly to a single supergene of large effect and were detectable by genome scans. Our results show that characteristics of adaptive inversions found in empirical studies (e.g. multiple large, old inversions that are FST outliers, sometimes overlapping with other inversions) are consistent with a highly polygenic architecture, and inversions do not need to contain any large-effect genes to play an important role in local adaptation. By combining a population and quantitative genetic framework, our results give a deeper understanding of the specific conditions needed for inversions to be involved in adaptation when the genetic architecture is polygenic. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Subject(s)
Chromosome Inversion , Gene Flow , Acclimatization , Adaptation, Physiological/genetics , Alleles , Humans
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210192, 2022 08.
Article in English | MEDLINE | ID: mdl-35694757

ABSTRACT

Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Evolution, Molecular , Genes, Insect , Genomics , Wings, Animal
9.
Ecol Lett ; 25(6): 1521-1533, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35545439

ABSTRACT

Spatial covariance between genotypic and environmental influences on phenotypes (CovGE ) can result in the nonrandom distribution of genotypes across environmental gradients and is a potentially important factor driving local adaptation. However, a framework to quantify the magnitude and significance of CovGE has been lacking. We develop a novel quantitative/analytical approach to estimate and test the significance of CovGE from reciprocal transplant or common garden experiments, which we validate using simulated data. We demonstrate how power to detect CovGE changes over a range of experimental designs. We confirm an inverse relationship between gene-by-environment interactions (GxE) and CovGE , as predicted by first principles, but show how phenotypes can be influenced by both. The metric provides a way to measure how phenotypic plasticity covaries with genetic differentiation and highlights the importance of understanding the dual influences of CovGE and GxE on phenotypes in studies of local adaptation and species' responses to environmental change.


Subject(s)
Acclimatization , Adaptation, Physiological , Genotype , Phenotype
10.
Evol Appl ; 15(3): 403-416, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35386401

ABSTRACT

Gradient Forest (GF) is a machine learning algorithm designed to analyze spatial patterns of biodiversity as a function of environmental gradients. An offset measure between the GF-predicted environmental association of adapted alleles and a new environment (GF Offset) is increasingly being used to predict the loss of environmentally adapted alleles under rapid environmental change, but remains mostly untested for this purpose. Here, we explore the robustness of GF Offset to assumption violations, and its relationship to measures of fitness, using SLiM simulations with explicit genome architecture and a spatial metapopulation. We evaluate measures of GF Offset in: (1) a neutral model with no environmental adaptation; (2) a monogenic "population genetic" model with a single environmentally adapted locus; and (3) a polygenic "quantitative genetic" model with two adaptive traits, each adapting to a different environment. We found GF Offset to be broadly correlated with fitness offsets under both single locus and polygenic architectures. However, neutral demography, genomic architecture, and the nature of the adaptive environment can all confound relationships between GF Offset and fitness. GF Offset is a promising tool, but it is important to understand its limitations and underlying assumptions, especially when used in the context of predicting maladaptation.

11.
Mol Ecol Resour ; 22(4): 1247-1261, 2022 May.
Article in English | MEDLINE | ID: mdl-34709728

ABSTRACT

There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome-wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base-pair resolution-whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl-CpG binding domain bisulfite sequencing (MBDBS)-using multiple individuals from two reef-building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation in Montipora capitata (11.4%) than the more sensitive Pocillopora acuta (2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross-species comparisons. As genome-wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.


Subject(s)
DNA Methylation , Epigenome , Animals , Bias , CpG Islands/genetics , High-Throughput Nucleotide Sequencing , Invertebrates/genetics , Sequence Analysis, DNA/methods
12.
Annu Rev Ecol Evol Syst ; 53(1): 113-136, 2022 Nov.
Article in English | MEDLINE | ID: mdl-38107485

ABSTRACT

Complex statistical methods are continuously developed across the fields of ecology, evolution, and systematics (EES). These fields, however, lack standardized principles for evaluating methods, which has led to high variability in the rigor with which methods are tested, a lack of clarity regarding their limitations, and the potential for misapplication. In this review, we illustrate the common pitfalls of method evaluations in EES, the advantages of testing methods with simulated data, and best practices for method evaluations. We highlight the difference between method evaluation and validation and review how simulations, when appropriately designed, can refine the domain in which a method can be reliably applied. We also discuss the strengths and limitations of different evaluation metrics. The potential for misapplication of methods would be greatly reduced if funding agencies, reviewers, and journals required principled method evaluation.

13.
Proc Biol Sci ; 288(1964): 20212122, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34847763

ABSTRACT

Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses-ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy-for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change.


Subject(s)
Adaptation, Physiological , Life Cycle Stages , Acclimatization , Animals , Climate Change , Genome , Selection, Genetic
14.
Proc Biol Sci ; 288(1965): 20212443, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34933604
15.
Sci Rep ; 11(1): 15535, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446758

ABSTRACT

Marine ecosystems are experiencing unprecedented warming and acidification caused by anthropogenic carbon dioxide. For the global sea surface, we quantified the degree that present climates are disappearing and novel climates (without recent analogs) are emerging, spanning from 1800 through different emission scenarios to 2100. We quantified the sea surface environment based on model estimates of carbonate chemistry and temperature. Between 1800 and 2000, no gridpoints on the ocean surface were estimated to have experienced an extreme degree of global disappearance or novelty. In other words, the majority of environmental shifts since 1800 were not novel, which is consistent with evidence that marine species have been able to track shifting environments via dispersal. However, between 2000 and 2100 under Representative Concentrations Pathway (RCP) 4.5 and 8.5 projections, 10-82% of the surface ocean is estimated to experience an extreme degree of global novelty. Additionally, 35-95% of the surface ocean is estimated to experience an extreme degree of global disappearance. These upward estimates of climate novelty and disappearance are larger than those predicted for terrestrial systems. Without mitigation, many species will face rapidly disappearing or novel climates that cannot be outpaced by dispersal and may require evolutionary adaptation to keep pace.

16.
Trends Ecol Evol ; 35(9): 809-822, 2020 09.
Article in English | MEDLINE | ID: mdl-32439075

ABSTRACT

Genetic redundancy has been defined in many different ways at different levels of biological organization. Here, we briefly review the general concept of redundancy and focus on the evolutionary importance of redundancy in terms of the number of genotypes that give rise to the same phenotype. We discuss the challenges in determining redundancy empirically, with published experimental examples, and demonstrate the use of the C-score metric to quantify redundancy in evolution studies. We contrast the implicit assumptions of redundancy in quantitative versus population genetic models, show how this contributes to signatures of allele frequency shifts, and highlight how the rapid accumulation of genome-wide association data provides an avenue for further understanding the prevalence and role of redundancy in evolution.


Subject(s)
Genome-Wide Association Study , Multigene Family , Biological Evolution , Evolution, Molecular , Genetics, Population , Genome , Genotype , Models, Genetic , Phenotype , Selection, Genetic
17.
Mol Ecol ; 28(11): 2711-2714, 2019 06.
Article in English | MEDLINE | ID: mdl-31250951

ABSTRACT

Global change is altering the climate that species have historically adapted to - in some cases at a pace not recently experienced in their evolutionary history - with cascading effects on all taxa. A central aim in global change biology is to understand how specific populations may be "primed" for global change, either through acclimation or adaptive standing genetic variation. It is therefore an important goal to link physiological measurements to the degree of stress a population experiences (Annual Review of Marine Science, 2012, 4, 39). Although "omic" approaches such as gene expression are often used as a proxy for the amount of stress experienced, we still have a poor understanding of how gene expression affects ecologically and physiologically relevant traits in non-model organisms. In a From the Cover paper in this issue of Molecular Ecology, Griffiths, Pan and Kelley (Molecular Ecology, 2019, 28) link gene expression to physiological traits in a temperate marine coral. They discover population-specific responses to ocean acidification for two populations that originated from locations with different histories of exposure to acidification. By integrating physiological and gene expression data, they were able to elucidate the mechanisms that explain these population-specific responses. Their results give insight into the physiogenomic feedbacks that may prime organisms or make them unfit for ocean global change.


Subject(s)
Environment , Phylogeny , Animals , Anthozoa/classification , Anthozoa/genetics , Gene Expression Regulation , Multivariate Analysis
18.
G3 (Bethesda) ; 9(6): 1851-1867, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30971391

ABSTRACT

Recently, there has been an increasing interest in identifying the role that regions of low recombination or inversion play in adaptation of species to local environments. Many examples of groups of adapted genes located within inversions are arising in the literature, in part inspired by theory that predicts the evolution of these so-called "supergenes." We still, however, have a poor understanding of how genomic heterogeneity, such as varying rates of recombination, may confound signals of selection. Here, I evaluate the effect of neutral inversions and recombination variation on genome scans for selection, including tests for selective sweeps, differentiation outlier tests, and association tests. There is considerable variation among methods in their performance, with some methods being unaffected and some showing elevated false positive signals within a neutral inversion or region of low recombination. In some cases the false positive signal can be dampened or removed, if it is possible to use a quasi-independent set of SNPs to parameterize the model before performing the test. These results will be helpful to those seeking to understand the importance of regions of low recombination in adaptation.

19.
Genome Biol ; 19(1): 157, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30290843

ABSTRACT

BACKGROUND: Linkage among genes experiencing different selection pressures can make natural selection less efficient. Theory predicts that when local adaptation is driven by complex and non-covarying stresses, increased linkage is favored for alleles with similar pleiotropic effects, with increased recombination favored among alleles with contrasting pleiotropic effects. Here, we introduce a framework to test these predictions with a co-association network analysis, which clusters loci based on differing associations. We use this framework to study the genetic architecture of local adaptation to climate in lodgepole pine, Pinus contorta, based on associations with environments. RESULTS: We identify many clusters of candidate genes and SNPs associated with distinct environments, including aspects of aridity and freezing, and discover low recombination rates among some candidate genes in different clusters. Only a few genes contain SNPs with effects on more than one distinct aspect of climate. There is limited correspondence between co-association networks and gene regulatory networks. We further show how associations with environmental principal components can lead to misinterpretation. Finally, simulations illustrate both benefits and caveats of co-association networks. CONCLUSIONS: Our results support the prediction that different selection pressures favor the evolution of distinct groups of genes, each associating with a different aspect of climate. But our results went against the prediction that loci experiencing different sources of selection would have high recombination among them. These results give new insight into evolutionary debates about the extent of modularity, pleiotropy, and linkage in the evolution of genetic architectures.


Subject(s)
Adaptation, Physiological/genetics , Climate , Genes, Plant , Genetic Linkage , Pinus/genetics , Pinus/physiology , Alleles , Computer Simulation , Databases, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Genetic Association Studies , Genetic Pleiotropy , Linkage Disequilibrium/genetics , Molecular Sequence Annotation , Multivariate Analysis , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis
20.
Mol Ecol Resour ; 18(6): 1209-1222, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29791785

ABSTRACT

Exome capture is an effective tool for surveying the genome for loci under selection. However, traditional methods require annotated genomic resources. Here, we present a method for creating cDNA probes from expressed mRNA, which are then used to enrich and capture genomic DNA for exon regions. This approach, called "EecSeq," eliminates the need for costly probe design and synthesis. We tested EecSeq in the eastern oyster, Crassostrea virginica, using a controlled exposure experiment. Four adult oysters were heat shocked at 36°C for 1 hr along with four control oysters kept at 14°C. Stranded mRNA libraries were prepared for two individuals from each treatment and pooled. Half of the combined library was used for probe synthesis, and half was sequenced to evaluate capture efficiency. Genomic DNA was extracted from all individuals, enriched via captured probes, and sequenced directly. We found that EecSeq had an average capture sensitivity of 86.8% across all known exons and had over 99.4% sensitivity for exons with detectable levels of expression in the mRNA library. For all mapped reads, over 47.9% mapped to exons and 37.0% mapped to expressed targets, which is similar to previously published exon capture studies. EecSeq displayed relatively even coverage within exons (i.e., minor "edge effects") and even coverage across exon GC content. We discovered 5,951 SNPs with a minimum average coverage of 80×, with 3,508 SNPs appearing in exonic regions. We show that EecSeq provides comparable, if not superior, specificity and capture efficiency compared to costly, traditional methods.


Subject(s)
Exome , Gene Expression , Sequence Analysis, DNA/methods , Animals , Base Composition , Cost-Benefit Analysis , Crassostrea/genetics , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sensitivity and Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...