Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(4): 1995-2007, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-36848621

ABSTRACT

The aim of this study was the optimization and validation of a green, robust, and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines that could be added as a new quality control tool for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage. A HS-SPME-GC-MS/MS method was optimized and automated using the autosampler to improve overall performance. A solvent-less technique and a strong minimization of all volumes were implemented to comply with the green analytical chemistry principles. There were as many as 44 VCC (mainly linear aldehydes, Strecker aldehydes, unsaturated aldehydes, ketones, and many other) analytes under investigation. All compounds showed a good linearity, and the LOQs were abundantly under the relevant perception thresholds. Intraday, 5-day interday repeatability, and recovery performances in a spiked real sample were evaluated showing satisfactory results. The method was applied to determine the evolution of VCCs in white and red wines after accelerated aging for 5 weeks at 50 °C. Furans and linear and Strecker aldehydes were the compounds that showed the most important variation; many VCCs increased in both classes of samples, whereas some showed different behaviors between white and red cultivars. The obtained results are in strong accordance with the latest models on carbonyl evolution related to wine aging.


Subject(s)
Volatile Organic Compounds , Wine , Tandem Mass Spectrometry , Wine/analysis , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Solid Phase Microextraction/methods , Aldehydes/analysis , Volatile Organic Compounds/analysis
2.
FEMS Microbes ; 4: xtad018, 2023.
Article in English | MEDLINE | ID: mdl-37854251

ABSTRACT

The inebriation of wild African elephants from eating the ripened and rotting fruit of the marula tree is a persistent myth in Southern Africa. However, the yeasts responsible for alcoholic fermentation to intoxicate the elephants remain poorly documented. In this study, we considered Botswana, a country with the world's largest population of wild elephants, and where the marula tree is indigenous, abundant and protected, to assess the occurrence and biodiversity of yeasts with a potential to ferment and subsequently inebriate the wild elephants. We collected marula fruits from over a stretch of 800 km in Botswana and isolated 106 yeast strains representing 24 yeast species. Over 93% of these isolates, typically known to ferment simple sugars and produce ethanol comprising of high ethanol producers belonging to Saccharomyces, Brettanomyces, and Pichia, and intermediate ethanol producers Wickerhamomyces, Zygotorulaspora, Candida, Hanseniaspora, and Kluyveromyces. Fermentation of marula juice revealed convincing fermentative and aromatic bouquet credentials to suggest the potential to influence foraging behaviour and inebriate elephants in nature. There is insufficient evidence to refute the aforementioned myth. This work serves as the first work towards understanding the biodiversity marula associated yeasts to debunk the myth or approve the facts.

3.
Metabolites ; 12(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35208254

ABSTRACT

Knowing in detail how the white and red wine aroma compounds behave under various storage conditions and especially at high temperature is important in order to understand the changes occurring to their sensorial character during the shelf life. The initial aim of this work was to develop and validate a fast, modern, robust, and comprehensive protocol for the quantification of 64 primary, secondary, and tertiary volatile compounds by using solid-phase extraction (SPE) cartridges in sample preparation and fast GC-MS/MS (gas chromatography-tandem mass spectrometry assay) in analysis. The protocol was applied to a study of the behavior of seven Gewürztraminer and seven Teroldego wines stored in anoxia at 50 °C for 2.5 and 5 weeks. The results demonstrated a sharp decrease of the main linear terpenes linalool, geraniol, and nerol and the consequent increase of the cyclic ones, such as α-terpineol and 1,8-cineole; the increase of the C13-norisoprenoids 1,1,6,-trimethyl-1,2-dihydronapthalene (TDN), and ß-damascenone and the C10 norisoprenoid safranal; the hydrolysis of acetates and linear esters; and the increase of some branched-chain esters. In red wines, a moderate increase was observed for some lactones. Some unwanted compounds, such as 2-aminoacetophenone (2-AAP), showed a notable increase in some Gewürztraminer wines, exceeding the olfactory threshold.

4.
Mol Nutr Food Res ; 66(3): e2100405, 2022 02.
Article in English | MEDLINE | ID: mdl-34821456

ABSTRACT

SCOPE: Wild strawberries (Fragaria vesca) are richer in (poly)phenols than common commercial strawberry varieties, e.g., Fragaria × ananassa. (Poly)phenols and their microbiota-derived metabolites are hypothesized to exert bioactivity within the human gut mucosa. To address this, the effects of wild strawberries are investigated with respect to their bioactivity and microbiota-modulating capacity using both in vitro and ex vivo approaches. METHODS AND RESULTS: Ileal fluids collected pre- (0h) and post-consumption (8h) of 225 g wild strawberries by ileostomates (n = 5) and also in vitro digested strawberry varieties (Fragaria vesca and Fragaria × ananassa Duchesne) supernatants are collected. Subsequent fermentation of these supernatants using an in vitro batch culture proximal colon model reveals significant treatment-specific changes in microbiome community structure in terms of alpha but not beta diversity at 24 h. Nutri-kinetic analysis reveals a significant increase in the concentration of gut microbiota catabolites, including 3-(4hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid, and benzoic acid. Furthermore, post-berry ileal fermentates (24 h) significantly (p < 0.01) decrease DNA damage (% Tail DNA, COMET assay) in both HT29 cells (∼45%) and CCD 841 CoN cells (∼25%) compared to untreated controls. CONCLUSIONS: Post berry consumption fermentates exhibit increased overall levels of (poly)phenolic metabolites, which retains their bioactivity, reducing DNA damage in colonocytes.


Subject(s)
Fragaria , Gastrointestinal Microbiome , Colon/metabolism , DNA Damage , Epithelial Cells , Fermentation , Fragaria/chemistry , Fruit/chemistry , Humans , Kinetics
6.
Microbiol Res ; 247: 126724, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33640575

ABSTRACT

Tagatose is a rare sugar metabolised by a limited number of microorganisms that inhibits a large spectrum of phytopathogens. In particular, tagatose inhibited Phytophthora infestans growth and negatively affected mitochondrial processes. However, the possible effects of tagatose on P. infestans metabolism have not yet been investigated. The aim of this study was to analyse the impact of this rare sugar on the sugar metabolism in P. infestans, in order to better understand its mode of action. Tagatose inhibited the growth of P. infestans with a precise reprogramming of the carbohydrate metabolism that involved a decrease of glucose, glucose-1-phosphate and mannose content and ß-glucosidase activity. The combination of tagatose with common sugars led to three different responses and highlighted antagonistic interactions. In particular, glucose partially attenuated the inhibitory effects of tagatose, while fructose fully impaired tagatose-mediated growth inhibition and metabolite changes. Moreover, sucrose did not attenuate tagatose effects, suggesting that the inhibition of sucrose catabolism and the alteration of glucose-related pathways contributed to the growth inhibition caused by tagatose to P. infestans. The interactions of tagatose with the common sugar metabolism were found to be a key mode of action against P. infestans growth, which may represent the basis for the further development of tagatose as an eco-friendly fungicide.


Subject(s)
Carbohydrate Metabolism , Hexoses/metabolism , Phytophthora infestans/growth & development , Phytophthora infestans/metabolism , Fungicides, Industrial/pharmacology , Glucose , Glucosephosphates , Hexoses/pharmacology , Mannose/metabolism , Phytophthora infestans/drug effects , Plant Diseases , Sucrose , beta-Glucosidase/metabolism
7.
Insect Biochem Mol Biol ; 127: 103474, 2020 12.
Article in English | MEDLINE | ID: mdl-33007407

ABSTRACT

Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.


Subject(s)
Hemiptera/microbiology , Phytoplasma/physiology , Plant Diseases/microbiology , Transcriptome , Animals , Insect Vectors/microbiology , Malus/microbiology
8.
Metabolomics ; 16(10): 102, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32949264

ABSTRACT

INTRODUCTION: Aromas and tastes have crucial influences on the quality of fermented beverages. The determination of aromatic compounds requires global non-targeted profiling of the volatile organic compounds (VOCs) in the beverages. However, experimental VOC profiling result depends on the chosen VOC collection method. OBJECTIVES: This study aims to observe the impact of using different sample preparation techniques [dynamic headspace (DHS), vortex-assisted liquid-liquid microextraction (VALLME), multiple stir bar sorptive extraction (mSBSE), solid phase extraction (SPE), and solid phase micro-extraction (SPME)] to figure out the most suitable sample preparation protocol for profiling the VOCs from fermented beverages. METHODS: Five common sample preparation methods were studied with beer, cider, red wine, and white wine samples. After the sample preparation, collected VOCs were analyzed by two-dimensional gas chromatography coupled with time of flight mass spectrometry (GCxGC-TOFMS). RESULTS: GCxGC oven parameters can be optimized with the Box-Behnken surface response model and response measure on peak dispersion. Due to the unavoidable column and detector saturation during metabolomic analysis, errors may happen during mass spectrum construction. Profiling results obtained with different sample preparation methods show considerable variance. Common findings occupy a small fraction of total annotated VOCs. For known fermentative aromas, best coverage can be reached by using SPME together with SPE for beer, and VALLME for wine and cider. CONCLUSIONS: GCxGC-TOFMS is a promising tool for non-targeted profiling on VOCs from fermented beverages. However, a proper data processing protocol is lacking for metabolomic analysis. Each sample preparation method has a specific profiling spectrum on VOC profiling. The coverage of the VOC metabolome can be improved by combining complementary methods.


Subject(s)
Fermented Foods/analysis , Specimen Handling/methods , Volatile Organic Compounds/analysis , Fermentation/physiology , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Solid Phase Microextraction/methods , Volatile Organic Compounds/chemistry
9.
Anal Bioanal Chem ; 409(23): 5555-5567, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28717897

ABSTRACT

The quantification of short-chain and medium-chain fatty acids is becoming more and more relevant in fecal and plasma samples due to their biological impact, which has been associated with colon rectal cancer and fiber consumption. For these reasons, a fast, cost-effective, and reproducible analytical method is highly required. In this research, a gas chromatography-mass spectrometry method based on full scan and multiple reaction monitoring (MRM) acquisition modes were optimized and validated for the analysis of short-chain and medium-chain fatty acids in three biological samples: human fecal water, fecal fermentation supernatants, and human plasma. Several extraction solvents (acidified water, diethyl ether, dichloromethane, ethyl acetate, and methyl tert-butyl ether (MTBE) were further evaluated, demonstrating that the latter was clearly the most suitable solvent with recoveries from 75.4 to 124.4% and coefficient of variations lower than 20%. The applicability of the GC-MS method was tested, for instance, acetic acid was quantified by using samples of plasma and feces from healthy donors at mean values of 66.9 µM and 24.5 mM, respectively. The optimized protocol could successfully find applications within multi-compartment human studies. In parallel, a second pilot experiment on fecal fermentation supernatants indicated that the proposed protocol is suitable to follow the formation of SCFAs during in vitro fermentation by the human gut microbiota. In summary, the present work provided an improved GC-MS method for precise and accurate quantification of SCFAs and MCFAs in human feces and plasma.


Subject(s)
Body Fluids/chemistry , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry/methods , Cost-Benefit Analysis , Fermentation , Gas Chromatography-Mass Spectrometry/economics , Humans
10.
Food Chem ; 232: 25-35, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28490072

ABSTRACT

Recently, various technologies which utilise fermentation with skins have been developed for obtaining distinct white wines. This study first reports the dynamic changes of volatiles and phenols that occur during skin fermentation in white winemaking. Volatiles were analysed by solid-phase extraction (SPE), solid-phase microextraction (SPME) and gas chromatography (GC), and phenols by ultra-performance liquid chromatography (UPLC), both with mass spectrometric detection. Monoterpenols increased during the first 3days of skin fermentation, after which certain glycosides decreased, but were higher than in control. The presence of skins reduced ho-trienol, ß-damascenone, acids and esters. After a 1-3days lag phase, skin fermentation caused a constant increase of most phenols. It was estimated that skin fermentation up to 1-3days might be beneficial for monoterpenol varietal aroma, which should be re-evaluated through further studies. Longer durations promoted phenol extraction more strongly, which is possibly suitable for obtaining more distinct wines or blending components.


Subject(s)
Phenols , Vitis , Wine , Fermentation , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds
11.
Food Chem ; 208: 68-80, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27132825

ABSTRACT

We carried out comprehensive mapping of volatile compounds in 70 wines, from 48 wineries and 6 vintages, representative of the two main production areas for Italian sparkling wines, by HS-SPME-GCxGC-TOF-MS and multivariate analysis. The final scope was to describe the metabolomics space of these wines, and to verify whether the grape cultivar signature, the pedoclimatic influence of the production area, and the complex technology were measurable in the final product. The wine chromatograms provided a wealth of information, with 1695 compounds being found. A large number of putative markers influenced by the cultivation area was observed. A subset of 196 biomarkers fully discriminated between the two types of sparkling wines investigated. Among the new compounds, safranal and α-isophorone were observed. We showed how correlation-based network analysis could be used as a tool to detect the differences in compound behaviour based on external/environmental influences.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Wine/analysis , Cyclohexenes , Italy , Mass Spectrometry/methods , Terpenes , Volatile Organic Compounds/analysis
12.
Article in English | MEDLINE | ID: mdl-24484892

ABSTRACT

Nowadays the trend in analytical chemistry is clearly towards the creation of multiple methods with extended coverage, enabling the determination of many different classes of compounds in a single analysis in which virtually all classes of different compounds are included in a single run. The aim of this study was to develop and validate a versatile and selective GC/MS/MS method for metabolite profiling of volatile compounds in apples, raspberries and grapes. Validation of the method was performed in terms of the limit of detection, limit of quantification, linearity range, and inter and intraday precision. Confirmation of the identity of the compounds in samples was carried out by checking compliance of the q/Q ratio of samples and reference standards. The multiple reaction monitoring with selection of two transition ions, one for quantification and one for confirmation, provided excellent selectivity and sensitivity, using the q/Q ratio as a confirmatory parameter. A multi target method was developed and validated for the simultaneous quantification and confirmation of 160 volatile compounds of raspberries, apples and grapes. The main classes were esters (42), alcohols (32), monoterpenes (31), aldehydes (17), ketones (12), norisoprenoids (8), acids (8), sesquiterpenes (7), pyrazines (3) and ethers (1) allowing the detection and quantification of 69 compounds in apples, 122 in grapes and 42 in raspberries. Moreover, the method developed can be easily extended to volatile compounds in other fruits and can therefore be widely used for quantification/profiling studies in the field of fruit aroma.


Subject(s)
Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Rosaceae/metabolism , Vitis/metabolism , Volatile Organic Compounds/analysis , Linear Models , Reproducibility of Results , Rosaceae/chemistry , Sensitivity and Specificity , Tandem Mass Spectrometry , Vitis/chemistry , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...