Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Cell Chem Biol ; 31(5): 920-931.e6, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759618

ABSTRACT

T cell receptor (TCR) plays a fundamental role in adaptive immunity, and TCR-T cell therapy holds great promise for treating solid tumors and other diseases. However, there is a noticeable absence of chemical tools tuning TCR activity. In our study, we screened natural sterols for their regulatory effects on T cell function and identified 7-alpha-hydroxycholesterol (7a-HC) as a potent inhibitor of TCR signaling. Mechanistically, 7a-HC promoted membrane binding of CD3ε cytoplasmic domain, a crucial signaling component of the TCR-CD3 complex, through alterations in membrane physicochemical properties. Enhanced CD3ε membrane binding impeded the condensation between CD3ε and the key kinase Lck, thereby inhibiting Lck-mediated TCR phosphorylation. Transient treatments of TCR-T cells with 7a-HC resulted in reduced signaling strength, increased memory cell populations, and superior long-term antitumor functions. This study unveils a chemical regulation of TCR signaling, which can be exploited to enhance the long-term efficacy of TCR-T cell therapy.


Subject(s)
Hydroxycholesterols , Receptors, Antigen, T-Cell , Signal Transduction , Signal Transduction/drug effects , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Animals , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Inbred C57BL , Phosphorylation/drug effects
2.
ACS Appl Mater Interfaces ; 16(13): 16962-16972, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520330

ABSTRACT

Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.


Subject(s)
Carrier Proteins , Silicon Dioxide , Silicon Dioxide/chemistry , Spectrum Analysis , Microscopy, Atomic Force , Surface Properties
3.
Proc Natl Acad Sci U S A ; 120(28): e2217301120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399423

ABSTRACT

A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Receptors, Antigen, T-Cell , Signal Transduction/physiology , Phosphorylation , Antigens/metabolism
4.
Proc Natl Acad Sci U S A ; 120(31): e2303675120, 2023 08.
Article in English | MEDLINE | ID: mdl-37494395

ABSTRACT

Anti-CRISPR (Acr) proteins are encoded by phages and other mobile genetic elements and inhibit host CRISPR-Cas immunity using versatile strategies. AcrIIC4 is a broad-spectrum Acr that inhibits the type II-C CRISPR-Cas9 system in several species by an unknown mechanism. Here, we determined a series of structures of Haemophilus parainfluenzae Cas9 (HpaCas9)-sgRNA in complex with AcrIIC4 and/or target DNA, as well as the crystal structure of AcrIIC4 alone. We found that AcrIIC4 resides in the crevice between the REC1 and REC2 domains of HpaCas9, where its extensive interactions restrict the mobility of the REC2 domain and prevent the unwinding of target double-stranded (ds) DNA at the PAM-distal end. Therefore, the full-length guide RNA:target DNA heteroduplex fails to form in the presence of AcrIIC4, preventing Cas9 nuclease activation. Altogether, our structural and biochemical studies illuminate a unique Acr mechanism that allows DNA binding to the Cas9 effector complex but blocks its cleavage by preventing R-loop formation, a key step supporting DNA cleavage by Cas9.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , R-Loop Structures , RNA, Guide, CRISPR-Cas Systems , DNA/metabolism , Bacteriophages/genetics , Gene Editing
5.
Nat Commun ; 14(1): 2616, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147290

ABSTRACT

The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.


Subject(s)
Receptors, Antigen, T-Cell , Signal Transduction , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation , Genes, MHC Class II , Mutagenesis , Protein Binding
6.
J Cell Biol ; 222(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37010470

ABSTRACT

The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.


Subject(s)
Actins , Dictyostelium , Protozoan Proteins , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Dictyostelium/genetics , Dictyostelium/metabolism , Signal Transduction , Wiskott-Aldrich Syndrome Protein/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
7.
Nature ; 612(7938): 170-176, 2022 12.
Article in English | MEDLINE | ID: mdl-36265513

ABSTRACT

Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.


Subject(s)
Cryoelectron Microscopy , Dinucleoside Phosphates , Folic Acid Antagonists , Folic Acid , Nucleotides, Cyclic , Animals , Humans , Dinucleoside Phosphates/metabolism , Folic Acid/metabolism , Folic Acid Antagonists/pharmacology , Mammals/metabolism , Nucleotides, Cyclic/metabolism , Reduced Folate Carrier Protein/chemistry , Reduced Folate Carrier Protein/genetics , Reduced Folate Carrier Protein/metabolism , Reduced Folate Carrier Protein/ultrastructure
8.
Nat Plants ; 8(7): 840-855, 2022 07.
Article in English | MEDLINE | ID: mdl-35798975

ABSTRACT

Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent ß-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Plastids/metabolism , Thylakoids/metabolism
9.
RSC Chem Biol ; 3(6): 707-720, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35755187

ABSTRACT

The von Willebrand factor (VWF), by interacting with the circulatory system and platelets, harnesses hemodynamic forces to form hemostatic plugs or occlusive thrombi. The autoinhibitory modules (AIMs) flanking the VWF-A1 domain were found to contribute to its biomechanical activation. However, how AIM sequences regulate the VWF-A1 binding behavior is controversial and incompletely understood as their structures are currently unsolvable by crystallography. To address this, we first performed molecular dynamics simulations to predict the N-terminal AIM (N-AIM; residues Q1238-E1260) structure. Excitingly, we found that N-AIM could cooperate with C-AIM to form a joint Rotini-like structure, thereby partially autoinhibiting the VWF-A1-GPIbα interaction. Furthermore, we used biomembrane force probe (BFP) assays to experimentally demonstrate that the VWF-A1 containing long N-AIM sequence (1238-A1) exhibited catch-bond behavior as the force first decelerated (catch) and then accelerated (slip) the dissociation. Conversely, VWF-A1 with short N-AIM (1261-A1) displayed bi-variable behaviors with either catch (1261H-A1) or slip bonds (1261L-A1). Notably, such bi-variable transition happened at low temperatures or high pH levels, whereas Q1238-E1260 stabilized the 1238-A1 catch bond regardless of the environmental factors. The physiological study was complemented by platelet perfusion assays using microfluidics. Taken together, these studies provide new mechanobiology on how N-AIM serves as a mechano-regulator of VWF activity, which inspires future VWF-A1 dependent antithrombotic approaches.

10.
Front Cell Dev Biol ; 10: 820562, 2022.
Article in English | MEDLINE | ID: mdl-35372359

ABSTRACT

Purpose: Pituitary adenomas (PAs) are the second most common intracranial neoplasms. Total surgical resection was extremely important for curing PAs, whereas tumor stiffness has gradually become the most critical factor affecting the resection rate in PAs. We aimed to investigate the molecular mechanisms of tumor stiffening and explore novel medications to reduce stiffness for improving surgical remission rates in PA patients. Methods: RNA sequencing, whole-genome bisulfite sequencing, and whole exome sequencing were applied to identify transcriptomic, epigenomic, and genomic underpinnings among 11 soft and 11 stiff PA samples surgically resected from patients at Peking Union Medical College Hospital (PUMCH). GH3 cell line and xenograft PA model was used to demonstrate therapeutic effect of sunitinib, and atomic force microscopy (AFM) was used to detect the stiffness of tumors. Results: Tumor microenvironment analyses and immunofluorescence staining indicated endothelial cells (ECs) and cancer-associated fibroblasts (CAFs) were more abundant in stiff PAs. Weighted gene coexpression network analysis identified the most critical stiffness-related gene (SRG) module, which was highly correlated with stiff phenotype, ECs and CAFs. Functional annotations suggested SRGs might regulate PA stiffness by regulating the development, differentiation, and apoptosis of ECs and CAFs and related molecular pathways. Aberrant DNA methylation and m6A RNA modifications were investigated to play crucial roles in regulating PA stiffness. Somatic mutation analysis revealed increased intratumoral heterogeneity and decreased response to immunotherapy in stiff tumors. Connectivity Map analysis of SRGs and pRRophetic algorithm based on drug sensitivity data of cancer cell lines finally determine sunitinib as a promising agent targeting stiff tumors. Sunitinib inhibited PA growth in vitro and in vivo, and also reduced tumor stiffness in xenograft PA models detected by AFM. Conclusion: This is the first study investigating the underlying mechanisms contributing to the stiffening of PAs, and providing novel insights into medication therapy for stiff PAs.

11.
Small ; 18(12): e2106196, 2022 03.
Article in English | MEDLINE | ID: mdl-35322558

ABSTRACT

Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.


Subject(s)
DNA , Microfluidics
12.
J Cell Biol ; 221(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35293953

ABSTRACT

Very little is known about how the material properties of protein condensates assembled via liquid-liquid phase separation (LLPS) are maintained and affect physiological functions. Here we show that liquid-like condensates of the transcription factor TFEB exhibit low fusion propensity in vitro and in living cells. We directly measured the attraction force between droplets, and we characterized the interfacial tension, viscosity, and elasticity of TFEB condensates. TFEB condensates contain rigid interfacial boundaries that govern their interaction behaviors. Several small molecules, including Ro-3306, modify the material properties of TFEB condensates, increasing their size and fusion propensity. These compounds promote lysosomal biogenesis and function in a TFEB-dependent manner without changing its cytoplasmic-nuclear translocation. Ro-3306 promotes autophagy activity, facilitating degradation of toxic protein aggregates. Our study helps explain how protein condensates are maintained as physically separate entities and reveals that the material properties of TFEB condensates can be harnessed to modulate TFEB activity.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Lysosomes , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation , Lysosomes/metabolism , Protein Transport , Proteins/metabolism
13.
J Biol Chem ; 298(4): 101782, 2022 04.
Article in English | MEDLINE | ID: mdl-35245500

ABSTRACT

Intracellular spaces are partitioned into separate compartments to ensure that numerous biochemical reactions and cellular functions take place in a spatiotemporally controlled manner. Biomacromolecules including proteins and RNAs undergo liquid-liquid phase separation and subsequent phase transition to form biological condensates with diverse material states. The material/physical properties of biological condensates are crucial for fulfilling their distinct physiological functions, and abnormal material properties can cause deleterious effects under pathological conditions. Here, we review recent studies showing the role of the material properties of biological condensates in their physiological functions. We also summarize several classic methods as well as newly emerging techniques for characterization and/or measurement of the material properties of biological condensates.


Subject(s)
Biological Assay , Cell Physiological Phenomena , Proteins , Biological Assay/trends , Phase Transition , Proteins/chemistry , Proteins/metabolism , RNA/chemistry
14.
Mol Cancer ; 21(1): 11, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34983546

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. METHODS: CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. RESULTS: The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. CONCLUSIONS: These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Genetic Testing , Liver Neoplasms/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Knockdown Techniques , Genetic Testing/methods , Humans , Kaplan-Meier Estimate , Liver Neoplasms/diagnosis , Liver Neoplasms/drug therapy , Mice , Oxidation-Reduction/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Prognosis , Treatment Outcome
15.
EMBO J ; 41(2): e107739, 2022 12 17.
Article in English | MEDLINE | ID: mdl-34913508

ABSTRACT

Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K/chemistry , Binding Sites , Cells, Cultured , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Humans , K562 Cells , Ligands , Mechanical Phenomena , Molecular Dynamics Simulation , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Protein Binding , Single Molecule Imaging
16.
Biophys Rep ; 8(2): 68-79, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-37287830

ABSTRACT

Numerous biomacromolecules undergo liquid-liquid phase separation (LLPS) inside living cells and LLPS plays important roles in their functions. The droplets formed by LLPS molecules are complex fluids and their behavior follows fluid mechanics, thus studies on rheological and material properties are required to gain full insight into the biophysical mechanism of these droplets. Biophysical force spectroscopy techniques are particularly useful in this aspect. Indeed, atomic force microscopy and optical tweezers have been used to quantify the elasticity and the viscoelasticity of LLPS droplets. The Biomembrane Force Probe (BFP) is a single-molecule technique designed to investigate liquid-like objects and is more suitable to quantify the material properties of LLPS droplets, but its usage on LLPS droplets is not yet described. Here we present an experimental protocol to measure the Young's modulus of LLPS droplets using BFP, we believe that the application of BFP on phase separation studies can be expanded and will be very helpful in deciphering the underlying principles of LLPS.

18.
Cell Res ; 31(10): 1047-1060, 2021 10.
Article in English | MEDLINE | ID: mdl-34465913

ABSTRACT

The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tensile Strength , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Immunization, Passive , Molecular Dynamics Simulation , Protein Binding , Protein Domains/immunology , Protein Subunits/chemistry , Protein Subunits/immunology , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , COVID-19 Serotherapy
19.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34342641

ABSTRACT

Activation of NLRP3 inflammasome is precisely controlled to avoid excessive activation. Although multiple molecules regulating NLRP3 inflammasome activation have been revealed, the checkpoints governing NLRP3 inflammasome activation remain elusive. Here, we show that activation of NLRP3 inflammasome is governed by GSTO1-promoted ASC deglutathionylation in macrophages. Glutathionylation of ASC inhibits ASC oligomerization and thus represses activation of NLRP3 inflammasome in macrophages, unless GSTO1 binds ASC and deglutathionylates ASC at ER, under control of mitochondrial ROS and triacylglyceride synthesis. In macrophages expressing ASCC171A, a mutant ASC without glutathionylation site, activation of NLRP3 inflammasome is GSTO1 independent, ROS independent, and signal 2 less dependent. Moreover, AscC171A mice exhibit NLRP3-dependent hyperinflammation in vivo. Our results demonstrate that glutathionylation of ASC represses NLRP3 inflammasome activation, and GSTO1-promoted ASC deglutathionylation at ER, under metabolic control, is a checkpoint for activating NLRP3 inflammasome.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Carrier Proteins/metabolism , Glutathione Transferase/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , CARD Signaling Adaptor Proteins/genetics , Carrier Proteins/genetics , Endoplasmic Reticulum/metabolism , Glutathione Transferase/genetics , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Mice, Mutant Strains , Reactive Oxygen Species/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...