Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chemosphere ; 356: 141862, 2024 May.
Article in English | MEDLINE | ID: mdl-38579954

ABSTRACT

Atmospheric exposure is an important pathway of accumulation of lead (Pb) in Oryza sativa L. grains. In this study, source contributions of soil, early atmospheric exposure, and late atmospheric exposure, along with their bioaccumulation ratios were examined both in the pot and field experiments using stable Pb isotope fingerprinting technology combined with a three-compartment accumulation model. Furthermore, genotype differences in airborne Pb accumulation among four field-grown rice cultivars were investigated using the partial least squares path model (PLS-PM) linking rice Pb accumulation to agronomic traits. The findings revealed that during the late growth period, the air-foliar-grain transfer of Pb was crucial for rice Pb accumulation. Approximately 69-82% of the Pb found in polished rice was contributed by atmospheric source, with more than 80% accumulating during the late growth stage. The air accumulation ratios of rice grains were genotype-specific and estimated to be 0.364-1.062 m3/g during the late growth. Notably, grain size exhibited the highest standardized total effects on the airborne Pb concentrations in the polished rice, followed by leaf Pb and the upward translocation efficiency of Pb. The present study indicates that mitigating the health risks associated with Pb in rice can be achieved by controlling atmospheric Pb levels during the late growth stage and choosing Japonica inbred varieties characterized by large grain size.


Subject(s)
Air Pollutants , Genotype , Lead , Oryza , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Lead/metabolism , Air Pollutants/analysis , Air Pollutants/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis , Environmental Monitoring/methods , Isotopes
2.
J Hazard Mater ; 427: 128169, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-34979386

ABSTRACT

Traditionally, lead (Pb) in rice grains has been thought to be mostly derived from soil, and the contribution of aerosol Pb remains so far unknown. Based on a meta-analysis, we surprisingly found rice Pb content decreased proportionally with urban atmospheric Pb concentrations in major rice-growing provinces in China during 2001-2015, suggestive of the strong influence of long-range Pb transport on agricultural environment. With the combination of field survey, field experiment, as well as a predictive model, we confirmed high contribution of atmospheric exposure to rice grain Pb in China. We for the first time developed a predictive mathematical model which revealed that aerosol Pb accumulation ratios of rice grains were related to both grain weight and accumulation types. We successfully predicted the national-scale rice Pb in China on the basis of the public data of urban PM2.5 from 19 rice-growing provinces and proposed a seasonal atmospheric Pb limit of 0.20 µg m-3 based on the safe threshold level of Pb in rice, which was much lower than the current limit of 1 µg m-3 set in China.


Subject(s)
Oryza , Soil Pollutants , China , Edible Grain/chemistry , Lead , Soil , Soil Pollutants/analysis
4.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2875-2882, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31418214

ABSTRACT

The contamination of antibiotic resistance genes (ARGs) caused by abuse of antibiotics has attracted more and more attention. Due to their low price, tetracyclines and sulfonamides are widely used. The plenty of residual tetracyclines and sulfonamides is discharged into wastewater treatment plant (WWTPs), with consequent ARGs pollution. To understand the current status of ARGs contamination and removal efficiency, we summarized the distribution and spread mechanism of tetracyclines and sulfonamides ARGs, and further emphasized the ARGs removal efficiency across different treatment technologies. Based on the current knowledge and lack of ARGs, future work were proposed, such as investigating ARGs contamination in WWTPs, improving ARGs removal technologies, exploring spread mechanisms of ARGs.


Subject(s)
Drug Resistance, Microbial/genetics , Genes, Bacterial , Waste Disposal, Fluid/methods , Wastewater/microbiology , Anti-Bacterial Agents , Sulfonamides , Tetracyclines
5.
Microbiome ; 6(1): 187, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30340631

ABSTRACT

BACKGROUND: Paddy soil dissolved organic matter (DOM) represents a major hotspot for soil biogeochemistry, yet we know little about its chemodiversity let alone the microbial community that shapes it. Here, we leveraged ultrahigh-resolution mass spectrometry, amplicon, and metagenomic sequencing to characterize the molecular distribution of DOM and the taxonomic and functional microbial diversity in paddy soils across China. We hypothesized that variances in microbial community significantly associate with changes in soil DOM molecular composition. RESULTS: We report that both microbial and DOM profiles revealed geographic patterns that were associated with variation in mean monthly precipitation, mean annual temperature, and pH. DOM molecular diversity was significantly correlated with microbial taxonomic diversity. An increase in DOM molecules categorized as peptides, carbohydrates, and unsaturated aliphatics, and a decrease in those belonging to polyphenolics and polycyclic aromatics, significantly correlated with proportional changes in some of the microbial taxa, such as Syntrophobacterales, Thermoleophilia, Geobacter, Spirochaeta, Gaiella, and Defluviicoccus. DOM composition was also associated with the relative abundances of the microbial metabolic pathways, such as anaerobic carbon fixation, glycolysis, lignolysis, fermentation, and methanogenesis. CONCLUSIONS: Our study demonstrates the continental-scale distribution of DOM is significantly correlated with the taxonomic profile and metabolic potential of the rice paddy microbiome. Abiotic factors that have a distinct effect on community structure can also influence the chemodiversity of DOM and vice versa. Deciphering these associations and the underlying mechanisms can precipitate understanding of the complex ecology of paddy soils, as well as help assess the effects of human activities on biogeochemistry and greenhouse gas emissions in paddy soils.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Fresh Water/chemistry , Fresh Water/microbiology , Microbiota/genetics , Organic Chemicals/analysis , Oryza/microbiology , Soil/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Carbon Cycle , Geography , Mass Spectrometry , Metagenome/genetics , Soil Microbiology
6.
Curr Med Sci ; 38(3): 461-466, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30074213

ABSTRACT

Filamin A and 14-3-3-σ are closely associated with the development of breast cancer. However, the exact relationship between them is still unknown. The present study aimed to examine the interaction of filamin A with 14-3-3-σ in the invasion and migration of breast cancer. RNA interference technology was employed to silence filamin A in MDA-MB-231 cells. Real-time PCR and Western blotting were used to detect the expression of filamin A and 14-3-3-σ at mRNA and protein levels, respectively. Double immunofluorescence was applied to show their colocalization morphologically. Wound healing assay and Trans-well assay were used to testify the migration and invasion of MDA-MB-231 cells in filamin A-silenced cells. The results showed that silencing filamin A significantly increased the mRNA and protein levels of 14-3-3σ. In addition, double immunofluorescence displayed that filamin A and 14-3-3σ were predominantly colocalized in the cytoplasm of MDA-MB-231 cells. Silencing filamin A led to the enhanced fluorescence of 14-3-3σ. Furthermore, cell functional experiments showed that silencing filamin A inhibited the migration and invasion of MDA-MB-231 cells in vitro. In conclusion, silencing filamin A may inhibit the invasion and migration of breast cancer cells by upregulating 14-3-3σ.


Subject(s)
14-3-3 Proteins/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Movement , Exoribonucleases/genetics , Filamins/metabolism , Gene Silencing , Up-Regulation/genetics , 14-3-3 Proteins/metabolism , Biomarkers, Tumor/metabolism , Cell Count , Cell Line, Tumor , Cytoplasm/metabolism , Down-Regulation/genetics , Exoribonucleases/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
7.
Ying Yong Sheng Tai Xue Bao ; 29(5): 1677-1685, 2018 May.
Article in Chinese | MEDLINE | ID: mdl-29797902

ABSTRACT

Bamboo charcoal is a high-quality biochar, with a large surface area, well-developed pores, and high mechanical strength. Therefore, it is one of the best choices of microbial immobilization carrier. In this study, the optimal preparation condition was examined for microorganisms immobilized on bamboo charcoal by the orthogonal test. The degradation effects of estrogen nonylphenol were compared between the bacteria immobilized on bamboo charcoal and free bacteria, and then feasibility of the reuse of immobilized bacteria was investigated. The results showed that lots of degrading bacteria could adhere to the surface and internal pores of bamboo charcoal. The optimum conditions for the preparation of immobilized microorganisms were as follows: 30 ℃, pH=7, 35-mesh bamboo charcoal. The degradation rate of nonylphenol was in good agreement with the first order kinetics equation. When the initial concentrations of nonylphenol were 30, 50, 80 and 100 mg·L-1, the degradation rates of nonylphenol of immobilized bacteria for seven days were 100%, 75.3%, 67.3% and 78.7%, respectively, which were significantly higher than those of free bacteria (54.2%, 51.5%, 30.6% and 23.5%). After eight rounds of reuse, the degradation rate for immobilized bacteria still reached as high as 36.5%, while it was only 8.9% for free bacteria. Our results indicated that the microorganisms immobilized on bamboo charcoal had long-term reusability, and thus had good prospects in the application of organic pollutants removal in wastewater.


Subject(s)
Charcoal , Phenols/metabolism , Sasa , Water Microbiology , Water , Water Purification
8.
J Zhejiang Univ Sci B ; 19(4): 317-326, 2018.
Article in English | MEDLINE | ID: mdl-29616507

ABSTRACT

With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM2.5 in these weather conditions. In this test, PM2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM2.5 were analyzed, the toxicity of PM2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM2.5 samples were water-soluble ions, particularly SO42-, NO3-, and NH4+, followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM2.5, the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.


Subject(s)
Air Pollutants/toxicity , Bronchi/drug effects , Bronchi/metabolism , Environmental Monitoring , Particulate Matter/toxicity , Carbon/chemistry , Humans , Ions , Metals, Heavy , Organic Chemicals , Particle Size , Seasons , Temperature , Water
9.
Appl Microbiol Biotechnol ; 100(16): 7171-80, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27225473

ABSTRACT

In the current study, we investigated nitrite-dependent anaerobic methane oxidation (N-DAMO) as a potential methane sink in the Hangzhou Bay and the adjacent Zhoushan sea area. The potential activity of the N-DAMO process was primarily observed in Hangzhou Bay by means of (13)C-labeling experiments, whereas very low or no potential N-DAMO activity could be detected in the Zhoushan sea area. The measured potential N-DAMO rates ranged from 0.2 to 1.3 nmol (13)CO2 g(-1) (dry sediment) day(-1), and the N-DAMO potentially contributed 2.0-9.4 % to the total microbial methane oxidation in the examined sediments. This indicated that the N-DAMO process may be an alternative pathway in the coastal methane cycle. Phylogenetic analyses confirmed the presence of Candidatus Methylomirabilis oxyfera-like bacteria in all the examined sediments, while the group A members (the dominant bacteria responsible for N-DAMO) were found mainly in Hangzhou Bay. Quantitative PCR showed that the 16S rRNA gene abundance of Candidatus M. oxyfera-like bacteria varied from 5.4 × 10(6) to 5.0 × 10(7) copies g(-1) (dry sediment), with a higher abundance observed in Hangzhou Bay. In addition, the overlying water NO3 (-) concentration and salinity were identified as the most important factors influencing the abundance and potential activity of Candidatus M. oxyfera-like bacteria in the examined sediments. This study showed the evidence of N-DAMO in coastal environments and indicated the importance of N-DAMO as a potential methane sink in coastal environments.


Subject(s)
Bacteria/metabolism , Bays/microbiology , Geologic Sediments/microbiology , Methane/metabolism , Nitrates/chemistry , Nitrites/chemistry , Anaerobiosis , Base Sequence , DNA, Bacterial/genetics , Isotope Labeling , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Sequence Analysis, DNA , Soil Microbiology
10.
Appl Microbiol Biotechnol ; 99(1): 349-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25242345

ABSTRACT

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1 × 10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2 g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3% in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biota , Methane/metabolism , Nitrites/metabolism , Soil Microbiology , Anaerobiosis , Bacteria/isolation & purification , Bacterial Proteins/genetics , China , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fresh Water , Isotope Labeling , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Wetlands
11.
Appl Environ Microbiol ; 80(24): 7611-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25261523

ABSTRACT

Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g(-1) (dry weight) day(-1) and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g(-1) (dry weight) day(-1) in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 10(5) to 2.0 × 10(6) copies g(-1) (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 10(5) to 6.1 × 10(6) copies g(-1) (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with "Candidatus Brocadia" and "Candidatus Kuenenia" and n-damo bacteria related to "Candidatus Methylomirabilis oxyfera" were present in the soil cores. It is estimated that a total loss of 50.7 g N m(-2) per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m(-2) per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.


Subject(s)
Ammonium Compounds/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Methane/metabolism , Nitrites/metabolism , Soil Microbiology , Anaerobiosis , Bacteria/classification , Bacteria/genetics , China , Floods , Molecular Sequence Data , Oxidation-Reduction , Phylogeny
12.
Proc Natl Acad Sci U S A ; 111(12): 4495-500, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24616523

ABSTRACT

The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 10(7) gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m(-2) per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution.


Subject(s)
Anaerobiosis , Bacteria/metabolism , Methane/metabolism , Wetlands , Bacteria/classification , Bacteria/genetics , Genes, Bacterial , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics
13.
Microb Ecol ; 67(2): 341-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24272281

ABSTRACT

Nitrite-dependent anaerobic methane oxidation (n-damo) process was reported to be mediated by "Candidatus Methylomirabilis oxyfera", which belongs to the candidate phylum NC10. M. oxyfera-like bacteria have been detected in lake ecosystems, while their distribution, diversity and abundance in river ecosystems have not been well studied. In this study, both the 16S rRNA and the pmoA molecular biomarkers confirmed the presence of diverse NC10 phylum bacteria related to M. oxyfera in a river ecosystem-the Qiantang River, Zhejiang Province (China). Phylogenetic analysis of 16S rRNA genes demonstrated that the recovered M. oxyfera-like sequences could be grouped into several distinct clusters that exhibited 89.8% to 98.9% identity to the M. oxyfera 16S rRNA gene. Similarly, several different clusters of pmoA gene sequences were observed, and these clusters displayed 85.1-95.4% sequence identity to the pmoA gene of M. oxyfera. Quantitative PCR showed that the abundance of M. oxyfera-like bacteria varied from 1.32 ± 0.16 × 10(6) to 1.03 ± 0.12 × 10(7) copies g (dry weight)(-1). Correlation analysis demonstrated that the total inorganic nitrogen content, the ammonium content and the organic content of the sediment were important factors affecting the distribution of M. oxyfera-like bacterial groups in the examined sediments. This study demonstrated the distribution of diverse M. oxyfera-like bacteria and their correlation with environmental factors in Qiantang River sediments.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Geologic Sediments/microbiology , Rivers/microbiology , Anaerobiosis , Bacteria/genetics , China , DNA, Bacterial/genetics , Ecosystem , Methane/chemistry , Nitrites/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Appl Environ Microbiol ; 79(19): 6167-72, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23747706

ABSTRACT

Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed "Candidatus Brocadia," "Candidatus Kuenenia," "Candidatus Anammoxoglobus," and "Candidatus Jettenia" in the collected soils, with "Candidatus Brocadia" being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 10(4) ± 0.42 × 10(4) to 3.69 × 10(6) ± 0.25 × 10(6) copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils.


Subject(s)
Ammonium Compounds/metabolism , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Biodiversity , Soil Microbiology , Bacteria, Anaerobic/metabolism , Bacterial Load , China , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
15.
Environ Microbiol Rep ; 5(3): 483-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23754729

ABSTRACT

This study describes the enrichment of anammox bacteria in a column simulating oxygen limited flooded paddy soils, which are important man-made ecosystems that receive substantial amounts of fixed nitrogen. The upper 50 cm of the paddy soil, containing a high amount of ammonium [1.6-10.4 mmol N kg (dry weight)(-1)], was selected as the inoculum for anammox enrichment. After 18 months of incubation with freshwater from the paddy soil ecosystem, the enrichment culture consumed approximately 4 mmol ammonium l(-1) day(-1) and 5 mmol nitrite l(-1) day(-1). The maximum specific anammox activity of the culture was 35.7 µmol N g (dry weight)(-1) h(-1). Fluorescence in situ hybridization indicated that anammox cells constituted 50% ± 10% of the enrichment culture. The phylogenetic analyses of 16S rRNA and the diagnostic hydrazine synthase (hzsA) genes showed that two dominant anammox species were enriched from paddy soil. The enriched Candidatus Anammoxoglobus-like organisms showed a 16S rRNA gene similarity of 97.5-99.2% to Candidatus Anammoxoglobus propionicus and the Candidatus Jettenia-like organisms showed 92.1-93.1% 16S rRNA gene identity to Candidatus Jettenia asiatica. Real-time quantitative PCR of hzsA gene suggested that up to 10(10) copies g (dry weight)(-1) of soil anammox bacteria were present in the enrichment culture.


Subject(s)
DNA, Bacterial/genetics , Nitrogen/metabolism , Planctomycetales/genetics , Planctomycetales/metabolism , Quaternary Ammonium Compounds/metabolism , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Anaerobiosis , DNA, Bacterial/classification , Genes, rRNA , Microbial Consortia/physiology , Phylogeny , Planctomycetales/classification , Planctomycetales/isolation & purification , RNA, Ribosomal, 16S/classification , Soil/chemistry
16.
Huan Jing Ke Xue ; 33(8): 2659-66, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23213887

ABSTRACT

By using annual agricultural non-point source model (AnnAGNPS), this study simulated the export loading of nitrogen and phosphorus in Siling Reservoir watershed in Tiaoxi Basin, and integrated with the simulation results, the spatial distribution characteristics of non-point source pollution in the watershed was analyzed. The result showed that the export loading of nitrogen and phosphorus had similar characteristics: in the study area, the export loading of nutrients were higher in southern and western regions and lower in northern and eastern regions. Forest land mainly made up of bamboo was the main export source of nitrogen and phosphorus loading with the contribution above 90% of nutrient load of whole watershed. Three fertilization practices such as no fertilizer (CK), site-specific nutrient management (SSNM) and farmers' fertilizaction practice (FFP) were used in the scenario analysis. The scenario analysis showed that to a certain degree, SSNM could reduce the nitrogen and phosphorus loss. Comparing with FFP, the reduction of SSNM in dissolved nitrogen (DN), particle nitrogen (PN), dissolved phosphorus (DP) and particle phosphorus (PP) was 8.17%, 4.33%, 9.08% and 1.02%, respectively.


Subject(s)
Crops, Agricultural/growth & development , Models, Theoretical , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Animals , China , Computer Simulation , Environmental Monitoring , Livestock , Rivers , Water Supply
17.
Front Microbiol ; 3: 269, 2012.
Article in English | MEDLINE | ID: mdl-22905032

ABSTRACT

Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by "Candidatus Methylomirabilis oxyfera." M. oxyfera is affiliated with the "NC10" phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

18.
Environ Microbiol Rep ; 4(5): 540-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23760899

ABSTRACT

Anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. However, little is known about the distribution, diversity and abundance of anammox bacteria in inland river ecosystems. Here, we found the presence of diverse anammox bacteria in a freshwater river - the Qiantang River, Zhejiang Province (China). The phylogenetic analysis of 16S rRNA genes showed that Brocadia genus, Kuenenia genus, Scalindua genus and three new anammox bacterial clusters could be detected together in Qiantang River sediments, suggesting a higher anammox bacterial diversity in the Qiantang River ecosystem than in open ocean environments where only Scalindua genus was detected. Brocadia and Kuenenia appeared to be the most common anammox bacterial genera in the Qiantang River. Redundancy analysis showed that the sediment organic carbon (OrgC) content had significant influence on the distribution of anammox bacteria in Qiantang River sediments. Pearson correlation analyses showed that OrgC content significantly influenced the anammox bacterial diversity. The results of real-time quantitative PCR showed spatial variations of anammox bacterial abundances which were highly correlated with the sediment total inorganic nitrogen content. These results demonstrated the distribution of diverse anammox bacteria and the influences of environmental factors on anammox bacterial communities in Qiantang River sediments.

19.
Ying Yong Sheng Tai Xue Bao ; 21(7): 1892-8, 2010 Jul.
Article in Chinese | MEDLINE | ID: mdl-20879552

ABSTRACT

Phosphorus (P) release from sediments is one of the most important causes of lake eutrophication, while the activity of P is determined by P chemical form. Due to its advantages in improving our knowledge about the P fractions in environmental samples, the 31P nuclear magnetic resonance (31P NMR) technology has received extensive attention. This paper summarized the current studies on the characterization, translocation, and transformation of P fractions in sediments by using this technology, and described the technical principles, classification, analytical procedures, and specific application fields of this technology. At present, the researches of sediment P by using 31P NMR technology were focused on the characterization of different P forms, the effects of microbes on the P translocation and transformation, and the quantitative analysis of different P fractions. The studies on the P-extracting agents and extraction methods were the hot topics as well. The potential issues and research trends about the application of 31P NMR technology in environmental samples were also discussed.


Subject(s)
Geologic Sediments/chemistry , Magnetic Resonance Spectroscopy/methods , Phosphorus/chemistry , Water Pollutants, Chemical/analysis , Fresh Water/analysis , Phosphorus/analysis , Phosphorus Isotopes/chemistry , Water Pollutants, Chemical/chemistry
20.
Chemosphere ; 81(9): 1118-23, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20934201

ABSTRACT

The current trend of global warming is expected to stimulate the expansion of harmful cyanobacteria blooms. Previously, the occidental type of barley straw has been used to control blooms in Europe and America, but very little is known about the antialgal abilities of its oriental relative. We tested the use of Tibetan hulless barley straw--the progenitor of oriental barley--to inhibit the growth of cyanobacterium Microcystis aeruginosa. Flow cytometry allowed assessment at single-cell level, with morphologic parameters (cell volume, cell membrane integrity) and physiological parameters (in vivo Chlorophyll a fluorescence, metabolic activity) used as endpoints. The reduction of cell densities together with integrated cell membranes suggests that Tibetan barley may act as an algistatic agent. Doses from 2.0 to 8.0 g L⁻¹ of Tibetan barley straw efficiently inhibited the alga, but these doses were much higher than those of occidental barley. Such a large dosage introduced additional nutrients, which stimulated the intracellular metabolic activity and induced two physiological subpopulations in the acute term. After mid and long-term exposure, the growth inhibition effect exceeded the stimulation effect, so that the cells' metabolic activity and Chlorophyll a fluorescence decayed, simultaneously with shrinkage in the algal cell volume.


Subject(s)
Environmental Restoration and Remediation/methods , Hordeum , Microcystis/growth & development , Chlorophyll/analysis , Chlorophyll A , Disinfectants/pharmacology , Eutrophication , Tibet , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...