Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Doc Ophthalmol ; 147(1): 45-57, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36995437

ABSTRACT

PURPOSE: Exposure to blue light is thought to be harmful to the retina. The purpose of this study was to determine the effects of long-term exposure to narrowband blue light on retinal function in rhesus monkeys. METHODS: Young rhesus monkeys were reared under short-wavelength "blue" light (n = 7; 465 nm, 183 ± 28 lx) on a 12-h light/dark cycle starting at 26 ± 2 days of age. Age-matched control monkeys were reared under broadband "white" light (n = 8; 504 ± 168 lx). Light- and dark-adapted full-field flash electroretinograms (ERGs) were recorded at 330 ± 9 days of age. Photopic stimuli were brief red flashes (0.044-5.68 cd.s/m2) on a rod-saturating blue background and the International Society for Clinical Electrophysiology of Vision (ISCEV) standard 3.0 white flash on a 30 cd/m2 white background. Monkeys were dark adapted for 20 min and scotopic stimuli were ISCEV standard white flashes of 0.01, 3.0, and 10 cd.s/m2. A-wave, b-wave, and photopic negative response (PhNR) amplitudes were measured. Light-adapted ERGs in young monkeys were compared to ERGs in adult monkeys reared in white light (n = 10; 4.91 ± 0.88 years of age). RESULTS: For red flashes on a blue background, there were no significant differences in a-wave (P = 0.46), b-wave (P = 0.75), and PhNR amplitudes (P = 0.94) between white light and blue light reared monkeys for all stimulus energies. ISCEV standard light- and dark-adapted a- and b-wave amplitudes were not significantly different between groups (P > 0.05 for all). There were no significant differences in a- and b-wave implicit times between groups for all ISCEV standard stimuli (P > 0.05 for all). PhNR amplitudes of young monkeys were significantly smaller compared to adult monkeys for all stimulus energies (P < 0.05 for all). There were no significant differences in a-wave (P = 0.19) and b-wave (P = 0.17) amplitudes between young and adult white light reared monkeys. CONCLUSIONS: Long-term exposure to narrowband blue light did not affect photopic or scotopic ERG responses in young monkeys. Findings suggest that exposure to 12 h of daily blue light for approximately 10 months does not result in altered retinal function.


Subject(s)
Color Vision , Electroretinography , Animals , Macaca mulatta , Photic Stimulation , Retina
2.
Ophthalmic Physiol Opt ; 43(3): 572-583, 2023 05.
Article in English | MEDLINE | ID: mdl-36779486

ABSTRACT

PURPOSE: Accumulating evidence suggests that time outdoors is protective against myopia development and that the choroid may be involved in this effect. The goal of this study was to examine the effect of 2 h of time outdoors in sunlight on retinal and choroidal thickness in adults. METHODS: Twenty adults, ages 23-46 years, each participated in three experimental sessions on different days, consisting of 2 h of exposure to (1) indoor illumination (350 lux), (2) darkness (<0.1 lux) or (3) outdoor environment (6000-50,000 lux). Spectral-domain optical coherence tomography (SD-OCT) imaging was conducted at baseline, after 1 and 2 h of exposure, and after 1 and 2 h of follow-up. Choroidal, total retinal, photoreceptor outer segment + retinal pigment epithelium (RPE) and photoreceptor inner segment thicknesses were determined. RESULTS: At 2 h, the choroid was significantly thinner during the outdoor compared with the indoor and dark conditions (p < 0.01) but was not significantly different at follow-up. Total retinal thickness was significantly thicker during and after the outdoor compared with the indoor and dark conditions. The outer segment + RPE was significantly thinner during the outdoor compared with the indoor condition but was not significantly different at follow-up. The inner segment was significantly thicker during the outdoor compared with the indoor and dark conditions during exposure and follow-up. CONCLUSIONS: Spending 2 h outdoors under high-intensity sunlight resulted in an unexpected thinning of the choroid, which recovered post-exposure. Retinal thickness showed different responses to the outdoor and indoor environments and was sensitive to the duration of exposure.


Subject(s)
Myopia , Retina , Adult , Humans , Young Adult , Middle Aged , Retina/diagnostic imaging , Choroid , Retinal Pigment Epithelium , Tomography, Optical Coherence/methods
3.
Curr Eye Res ; 48(3): 289-296, 2023 03.
Article in English | MEDLINE | ID: mdl-36357337

ABSTRACT

PURPOSE: Intraocular pressure (IOP) is an important factor in numerous ocular conditions and research areas, including eye growth and myopia. In infant monkeys, IOP is typically measured under anesthesia. This study aimed to establish a method for awake IOP measurement in infant rhesus monkeys, determine diurnal variation, and assess the effects of dilation and sedation. METHODS: Awake IOP (iCare TonoVet) was measured every 2 h from 7:30 am to 5:30 pm to assess potential diurnal variations in infant rhesus monkeys (age 3 weeks, n = 11). The following day, and every 2 weeks to age 15 weeks, IOP was measured under three conditions: (1) awake, (2) awake and dilated (tropicamide 0.5%), and (3) sedated (ketamine and acepromazine) and dilated. Intraclass correlation coefficient (ICC) was used to determine intersession repeatability, and repeated measures. ANOVA was used to determine effects of age and condition. RESULTS: At age 3 weeks, mean (±SEM) awake IOP was 15.4 ± 0.6 and 15.2 ± 0.7 mmHg for right and left eyes, respectively (p=.59). The ICC between sessions was 0.63[-0.5 to 0.9], with a mean difference of 2.2 ± 0.3 mmHg. Diurnal IOP from 7:30 am to 5:30 pm showed no significant variation (p=.65). From 3 to 15 weeks of age, there was a significant effect of age (p=.01) and condition (p<.001). Across ages, IOP was 17.8 ± 0.7 mmHg while awake and undilated, 18.4 ± 0.2 mmHg awake and dilated, and 11.0 ± 0.3 mmHg after sedation and dilation. CONCLUSIONS: Awake IOP measurement was feasible in young rhesus monkeys. No significant diurnal variations in IOP were observed between 7:30 am and 5:30 pm at age 3 weeks. In awake monkeys, IOP was slightly higher after mydriasis and considerably lower after sedation. Findings show that IOP under ketamine/acepromazine anesthesia is significantly different than awake IOP in young rhesus monkeys.


Subject(s)
Anesthesia , Glaucoma, Open-Angle , Ketamine , Animals , Intraocular Pressure , Macaca mulatta , Ketamine/pharmacology , Acepromazine , Dilatation , Tonometry, Ocular
4.
Invest Ophthalmol Vis Sci ; 63(8): 6, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35816044

ABSTRACT

Purpose: To determine the effects of monocular light deprivation on diurnal rhythms in retinal and choroidal thickness. Methods: Twenty participants, ages 22 to 45 years, underwent spectral domain optical coherence tomography imaging every three hours, from 8 AM to 8 PM, on two consecutive days. Participants wore an eye patch over the left eye starting at bedtime of day 1 until the end of the last measurement on day 2. Choroidal, total retinal, photoreceptor outer segment + retinal pigment epithelium (RPE), and photoreceptor inner segment thicknesses were determined. Results: For both eyes, significant diurnal variations were observed in choroidal, total retinal, outer segment + RPE, and inner segment thickness (P < 0.001). For light-deprived eyes, choroid diurnal variation persisted, although the choroid was significantly thinner at 8 AM and 11 AM (P < 0.01) on day 2 compared to day 1. On the other hand, diurnal variations in retinal thickness were eliminated in the light-deprived eye on day 2 when the eye was patched (P > 0.05). Total retinal and inner segment thicknesses significantly decreased (P < 0.001) and outer segment + RPE thickness significantly increased (P < 0.05) on day 2 compared to day 1. Conclusions: Blocking light exposure in one eye abolished the rhythms in retinal thickness, but not in choroidal thickness, of the deprived eye. Findings suggest that the rhythms in retinal thickness are, at least in part, driven by light exposure, whereas the rhythm in choroidal thickness is not impacted by short-term light deprivation.


Subject(s)
Choroid , Circadian Rhythm , Adult , Humans , Middle Aged , Retina/diagnostic imaging , Retinal Pigment Epithelium , Tomography, Optical Coherence/methods , Young Adult
6.
Front Physiol ; 12: 711525, 2021.
Article in English | MEDLINE | ID: mdl-34393828

ABSTRACT

Purpose: Light affects a variety of non-image forming processes, such as circadian rhythm entrainment and the pupillary light reflex, which are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). The purpose of this study was to assess the effects of long- and short-wavelength ambient lighting on activity patterns and pupil responses in rhesus monkeys. Methods: Infant rhesus monkeys were reared under either broadband "white" light (n = 14), long-wavelength "red" light (n = 20; 630 nm), or short-wavelength "blue" light (n = 21; 465 nm) on a 12-h light/dark cycle starting at 24.1 ± 2.6 days of age. Activity was measured for the first 4 months of the experimental period using a Fitbit activity tracking device and quantified as average step counts during the daytime (lights-on) and nighttime (lights-off) periods. Pupil responses to 1 s red (651 nm) and blue (456 nm) stimuli were measured after approximately 8 months. Pupil metrics included maximum constriction and the 6 s post-illumination pupil response (PIPR). Results: Activity during the lights-on period increased with age during the first 10 weeks (p < 0.001 for all) and was not significantly different for monkeys reared in white, red, or blue light (p = 0.07). Activity during the 12-h lights-off period was significantly greater for monkeys reared in blue light compared to those in white light (p = 0.02), but not compared to those in red light (p = 0.08). However, blue light reared monkeys exhibited significantly lower activity compared to both white and red light reared monkeys during the first hour of the lights-off period (p = 0.01 for both) and greater activity during the final hour of the lights-off period (p < 0.001 for both). Maximum pupil constriction and the 6 s PIPR to 1 s red and blue stimuli were not significantly different between groups (p > 0.05 for all). Conclusion: Findings suggest that long-term exposure to 12-h narrowband blue light results in greater disruption in nighttime behavioral patterns compared to narrowband red light. Normal pupil responses measured later in the rearing period suggest that ipRGCs adapt after long-term exposure to narrowband lighting.

7.
Invest Ophthalmol Vis Sci ; 61(10): 40, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32832970

ABSTRACT

Purpose: To determine the effects of narrowband light exposure on choroidal thickness and the pupil response in humans. Methods: Twenty subjects, ages 21 to 43 years, underwent 1 hour of exposure to broadband, short wavelength "blue," or long wavelength "red" light, or darkness. Choroidal thickness, imaged with spectral domain optical coherence tomography, axial length, determined from biometry, and rod/cone- and intrinsically photosensitive retinal ganglion cell-driven pupil responses were measured before and after exposure. Pupil stimuli were six 1 second alternating red (651 nm) and blue (456 nm) stimuli, 60 seconds apart. Pupil metrics included maximum constriction and the 6 second post-illumination pupil response (PIPR). Results: Compared with before exposure, the choroid significantly thinned after broadband light, red light, and dark exposure (all P < 0.05), but not after blue light exposure (P = 0.39). The maximum constriction to 1 second red stimuli significantly decreased after all light exposures (all P < 0.001), but increased after dark exposure (P = 0.02), compared with before exposure. Maximum constriction and 6-second PIPR to 1 second blue stimuli significantly decreased after all light exposures compared with before exposure (all P < 0.005), with no change after dark exposure (P > 0.05). There were no differences in axial length change or 6-second PIPR to red stimuli between exposures. Conclusions: Narrowband blue and red light exposure induced differential changes in choroidal thickness. Maximum constriction, a function of rod/cone activity, and the intrinsically photosensitive retinal ganglion cell-mediated PIPR were attenuated after all light exposures. Findings demonstrate differing effects of short-term narrowband light and dark exposure on the choroid, rod/cone activity, and intrinsically photosensitive retinal ganglion cells.


Subject(s)
Choroid/radiation effects , Reflex, Pupillary/radiation effects , Adult , Choroid/anatomy & histology , Choroid/diagnostic imaging , Female , Humans , Light , Male , Photic Stimulation , Pupil/radiation effects , Retinal Ganglion Cells/radiation effects , Tomography, Optical Coherence , Young Adult
8.
Sensors (Basel) ; 19(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717360

ABSTRACT

Due to the widespread presence of noise, such as clouds and cloud shadows, continuous, high spatiotemporal-resolution dynamic monitoring of lake water extents is still limited using remote sensing data. This study aims to take an approach to mapping continuous time series of highly-accurate lake water extents. Four lakes from diverse regions of China were selected as cases. In order to reduce the impact of noise and ensure high spatial and temporal resolution of the final results, two sets of MODIS products (including MOD09A1 and MOD13Q1) are used to extract water bodies. This approach mainly comprises preliminary classification, post processing and data fusion. The preliminary classification used the Random Forest (RF) classifier to efficiently and automatically obtain the initial classification results. Post-processing is implemented to repair the classification results affected by noise as much as possible. The processed results of the two sets of products are fused by using the Homologous Data-Based Spatial and Temporal Adaptive Fusion Method (HDSTAFM), which reduces the effect of noise and also improve the temporal and spatial resolution for the final water results. We determined the accuracy using Landsat-based water results, and the values of overall accuracy (OA), user's accuracy (UA), producer's accuracy (PA), and kappa coefficients (KC) are mostly greater than 0.9. Good correlation was achieved for a time series of water area and altimetry data, obtained by multiple satellites, and also for water-level data selected from hydrological stations.

9.
Sensors (Basel) ; 18(4)2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29690643

ABSTRACT

The rapid and accurate detection of urban water is critical for urban management, river detection, and flood disaster assessment. This study is devoted to detecting water by GaoFen-3 (GF-3) Synthetic Aperture Radar (SAR) images with high spatial resolution. There have been no effective solutions that discriminate water and building shadows using a single SAR image in previous research. Inspired by the principle that every shadow has a corresponding building nearby, a new method is proposed in this study, whereby building shadows are removed depending on the correspondence of buildings and their shadows. The proposed method is demonstrated effective and efficient by experimental results on six GF-3 SAR images. The Receiver Operating Characteristic (ROC) curves of the water detection results indicate that the proposed method increases the Probability of Detection (PD) to 98.36% and decreases the Probability of False Alarm (PFA) to 1.91% compared with the thresholding method, where, at the same PFA level, the maximum PD of the thresholding method is 72.62% in all testing samples. The proposed method is capable of removing building shadows and detecting water with high precision in urban areas, which presents the great potential of high-spatial-resolution GF-3 images in terms of water resource management.

SELECTION OF CITATIONS
SEARCH DETAIL
...