Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
New Phytol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708439

ABSTRACT

Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.

2.
Genes (Basel) ; 13(9)2022 08 24.
Article in English | MEDLINE | ID: mdl-36140687

ABSTRACT

Simple sequence repeats (SSRs) are one of the most important molecular markers, which are widespread in plants. Bamboos are important forest resources worldwide. Here, the comprehensive identification and comparative analysis of SSRs were performed in three woody and two herbaceous bamboo species. Altogether 567,175 perfect SSRs and 71,141 compound SSRs were identified from 5737.8 Mb genome sequences of five bamboo species. Di-nucleotide SSRs were the most predominant type, with an average of ~50,152.2 per species. Most SSRs were located in intergenic regions, while those located in genic regions were relatively less. Moreover, the results of annotation distribution indicated that terms with P450, peroxidase and ATP-binding cassette transporter related to lignin biosynthesis might play important roles in woody and herbaceous bamboos under the mediation of SSRs. Furthermore, the peroxidase gene family consisted of a large number of genes containing SSRs was selected for the evolutionary relationship analysis and SSR markers development. Fifteen SSR markers derived from peroxidase family genes of Phyllostachys edulis were identified as polymorphic in 34 accessions belonging to seven genera in Bambusoideae. These results provided a comprehensive insight of SSR markers into bamboo genomes, which would facilitate bamboo research related to comparative genomics, evolution and marker-assisted selection.


Subject(s)
Lignin , Microsatellite Repeats , ATP-Binding Cassette Transporters/genetics , DNA, Intergenic , Microsatellite Repeats/genetics , Nucleotides , Peroxidases/genetics
3.
Front Plant Sci ; 13: 992794, 2022.
Article in English | MEDLINE | ID: mdl-36164374

ABSTRACT

Culm color variation is an interesting phenomenon that contributes to the breeding of new varieties of ornamental plants during domestication. De-domesticated variation is considered ideal for identifying and interpreting the molecular mechanisms of plant mutations. However, the variation in culm color of bamboo remains unknown. In the present study, yellow and green culms generated from the same rhizome of Phyllostachys vivax cv. Aureocaulis (P. vivax) were used to elucidate the molecular mechanism of culm color formation. Phenotypic and physiological data showed that environmental suitability was higher in green culms than in yellow culms. High-throughput sequencing analysis showed 295 differentially expressed genes (DEGs) and 22 differentially expressed miRNAs (DEMs) in two different colored bamboo culms. There were 103 DEM-DEG interaction pairs, of which a representative "miRNA-mRNA" regulatory module involved in photosynthesis and pigment metabolism was formed by 14 DEM-DEG pairs. The interaction of the three key pairs was validated by qPCR and dual-luciferase assays. This study provides new insights into the molecular mechanism of miRNAs involved in P. vivax culm color formation, which provides evidence for plant de-domestication and is helpful for revealing the evolutionary mechanism of bamboo.

4.
Front Plant Sci ; 13: 927949, 2022.
Article in English | MEDLINE | ID: mdl-36035723

ABSTRACT

Plants employ an array of photoprotection mechanisms to alleviate the harmful effects of high light intensity. The violaxanthin cycle, which is associated with non-photochemical quenching (NPQ), involves violaxanthin de-epoxidase (VDE), and zeaxanthin epoxidase (ZEP) and is one of the most rapid and efficient mechanisms protecting plants under high light intensity. Woody bamboo is a class of economically and ecologically important evergreen grass species widely distributed in tropical and subtropical areas. However, the function of VDE in bamboo has not yet been elucidated. In this study, we found that high light intensity increased NPQ and stimulated the de-epoxidation of violaxanthin cycle components in moso bamboo (Phyllostachys edulis), whereas, samples treated with the VDE inhibitor (dithiothreitol) exhibited lower NPQ capacity, suggesting that violaxanthin cycle plays an important role in the photoprotection of bamboo. Further analysis showed that not only high light intensity but also extreme temperatures (4 and 42°C) and drought stress upregulated the expression of PeVDE in bamboo leaves, indicating that PeVDE is induced by multiple abiotic stresses. Overexpression of PeVDE under the control of the CaMV 35S promoter in Arabidopsis mutant npq1 mutant could rescue its NPQ, indicating that PeVDE functions in dissipating the excess absorbed light energy as thermal energy in bamboo. Moreover, compared with wild-type (Col-0) plants, the transgenic plants overexpressing PeVDE displayed enhanced photoprotection ability, higher NPQ capacity, slower decline in the maximum quantum yield of photosystem II (F v /F m ) under high light intensity, and faster recovery under optimal conditions. These results suggest that PeVDE positively regulates the response to high light intensity in bamboo plants growing in the natural environment, which could improve their photoprotection ability through the violaxanthin cycle and NPQ.

5.
Plant Physiol ; 188(4): 2182-2198, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35157078

ABSTRACT

Primary thickening determines bamboo yield and wood property. However, little is known about the regulatory networks involved in this process. This study identified a total of 58,652 genes and 150 miRNAs via transcriptome and small RNA sequencing using the underground thickening shoot samples of wild-type (WT) Moso bamboo (Phyllostachys edulis) and a thick wall (TW) variant (P. edulis "Pachyloen") at five developmental stages (WTS1/TWS1-WTS5/TWS5). A total of 14,029 (65.17%) differentially expressed genes and 68 (45.33%) differentially expressed miRNAs were identified from the WT, TW, and WTTW groups. The first two groups were composed of four pairwise combinations, each between two successive stages (WTS2/TWS2_versus_WTS1/TWS1, WTS3/TWS3_versus_WTS2/TWS2, WTS4/TWS4_versus_WTS3/TWS3, and WTS5/TWS5_versus_WTS4/TWS4), and the WTTW group was composed of five combinations, each between two relative stages (TWS1-5_versus_WTS1-5). Additionally, among the phytohormones, zeatin showed more remarkable changes in concentrations than indole-3-acetic acid, gibberellic acid, and abscisic acid throughout the five stages in the WT and the TW groups. Moreover, 125 cleavage sites were identified for 387 miRNA-mRNA pairs via degradome sequencing (P < 0.05). The dual-luciferase reporter assay confirmed that 13 miRNAs bound to 12 targets. Fluorescence in situ hybridization localized miR166 and miR160 in the shoot apical meristem and the procambium of Moso bamboo shoots at the S1 stage. Thus, primary thickening is a complex process regulated by miRNA-gene-phytohormone networks, and the miRNAome and transcriptome dynamics regulate phenotypic plasticity. These findings provide insights into the molecular mechanisms underlying wood formation and properties and propose targets for bamboo breeding.


Subject(s)
Plant Breeding , Transcriptome , Gene Expression Regulation, Plant , In Situ Hybridization, Fluorescence , Plant Growth Regulators/metabolism , Poaceae/genetics , Poaceae/metabolism , Transcriptome/genetics
6.
Plant Physiol ; 187(2): 900-916, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34608957

ABSTRACT

Woody bamboo is environmentally friendly, abundant, and an alternative to conventional timber. Degree of lignification and lignin content and deposition affect timber properties. However, the lignification regulatory network in monocots is poorly understood. To elucidate the regulatory mechanism of lignification in moso bamboo (Phyllostachys edulis), we conducted integrated analyses using transcriptome, small RNA, and degradome sequencing followed by experimental verification. The lignification degree and lignin content increased with increased bamboo shoot height, whereas phenylalanine ammonia-lyase and Laccase activities first increased and then decreased with shoot growth. Moreover, we identified 11,504 differentially expressed genes (DEGs) in different portions of the 13th internodes of different height shoots; most DEGs associated with cell wall and lignin biosynthesis were upregulated, whereas some DEGs related to cell growth were downregulated. We identified a total of 1,502 miRNAs, of which 687 were differentially expressed. Additionally, in silico and degradome analyses indicated that 5,756 genes were targeted by 691 miRNAs. We constructed a regulatory network of lignification, including 11 miRNAs, 22 transcription factors, and 36 enzyme genes, in moso bamboo. Furthermore, PeLAC20 overexpression increased lignin content in transgenic Arabidopsis (Arabidopsis thaliana) plants. Finally, we proposed a reliable miRNA-mediated "MYB-PeLAC20" module for lignin monomer polymerization. Our findings provide definite insights into the genetic regulation of bamboo lignification. In addition to providing a platform for understanding related mechanisms in other monocots, these insights could be used to develop strategies to improve bamboo timber properties.


Subject(s)
Gene Regulatory Networks , Lignin/physiology , MicroRNAs/genetics , Plant Shoots/physiology , Poaceae/physiology , RNA, Plant/genetics , Poaceae/genetics , Transcriptome
7.
Nat Commun ; 12(1): 5466, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526499

ABSTRACT

Moso bamboo (Phyllostachys edulis) is an economically and ecologically important nontimber forestry species. Further development of this species as a sustainable bamboo resource has been hindered by a lack of population genome information. Here, we report a moso bamboo genomic variation atlas of 5.45 million single-nucleotide polymorphisms (SNPs) from whole-genome resequencing of 427 individuals covering 15 representative geographic areas. We uncover low genetic diversity, high genotype heterozygosity, and genes under balancing selection underlying moso bamboo population adaptation. We infer its demographic history with one bottleneck and its recently small population without a rebound. We define five phylogenetic groups and infer that one group probably originated by a single-origin event from East China. Finally, we conduct genome-wide association analysis of nine important property-related traits to identify candidate genes, many of which are involved in cell wall, carbohydrate metabolism, and environmental adaptation. These results provide a foundation and resources for understanding moso bamboo evolution and the genetic mechanisms of agriculturally important traits.


Subject(s)
Genome, Plant/genetics , Genome-Wide Association Study/methods , Poaceae/genetics , Transcriptome , Adaptation, Physiological/genetics , China , Evolution, Molecular , Gene Expression Regulation, Plant , Genetic Variation , Genetics, Population/methods , Genomics/methods , Geography , Phylogeny , Plant Proteins/genetics , Poaceae/classification , Poaceae/metabolism , Polymorphism, Single Nucleotide , Exome Sequencing/methods
8.
Plant Cell Rep ; 40(7): 1101-1114, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34100122

ABSTRACT

KEY MESSAGE: PePIP2;7, a leaf-specific aquaporin gene in bamboo, is upregulated under abiotic stresses. Overexpressing PePIP2;7 confers abiotic stresses tolerance in transgenic Arabidopsis plant and yeast. Aquaporins (AQPs) participate in the regulation of water balance in plants. However, the function of AQPs in bamboo remains unclear. Here, PePIP2;7 was identified as a leaf-specific aquaporin gene in moso bamboo based on the expression analysis of transcriptome data and PCR. In situ hybridization further indicated that PePIP2;7 was mainly expressed in mesophyll cells of mature leaves, while in immature leaves it was dominant in blade edge cells followed by mesophyll cells. Interestingly, PePIP2;7 was strongly expressed in the mesophyll cells near bulliform cells of immature leaves, suggesting that PePIP2;7 might function in water transport and contribute to leaf unfolding. The transient expression assay showed that PePIP2;7 was a plasma membrane intrinsic protein. Furthermore, PePIP2;7 was upregulated under abiotic stresses such as high light, drought, and NaCl. Compared with Col-0, transgenic Arabidopsis plants overexpressing PePIP2;7 had better seed germination rate, longer taproot length, higher SOD activity, and lower MDA content under abiotic stresses. Besides, yeasts expressing PePIP2;7 also had higher tolerance to stress compared to the control. Taken together, our results show that PePIP2;7 is leaf-specific and involved in stress response, which provides new insights into aquaporin function in bamboo.


Subject(s)
Aquaporins/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Sasa/genetics , Stress, Physiological/genetics , Antioxidants/metabolism , Aquaporins/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Enzymes/metabolism , Fluorescence , Gene Expression Regulation, Plant , Germination/drug effects , Mannitol/pharmacology , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Real-Time Polymerase Chain Reaction , Salinity , Sodium Chloride/pharmacology , Stress, Physiological/physiology
9.
Plant Cell Rep ; 39(6): 751-763, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32152695

ABSTRACT

KEY MESSAGE: Twenty-three PeLACs have been identified in moso bamboo, overexpression of PeLAC10 increases the lignin content and confers drought and phenolic acid tolerance in transgenic Arabidopsis. Laccases (LACs) have multifunction involved in the processes of cell elongation, lignification and stress response in plants. However, the function of laccases in bamboo remain unclear. Here, a total of 23 laccase genes (PeLAC1-PeLAC23) were identified in moso bamboo (Phyllostachys edulis). The diverse gene structure and expression pattern of PeLACs suggested that their function should be spatiotemporal and complicated, which was supported by the expression profiles in different tissues of moso bamboo. Eighteen PeLACs were identified as the targets of ped-miR397. The putative ped-miR397-binding site in the coding region of PeLAC10 was further confirmed by RLM-5' RACE, indicating that PeLAC10 was regulated by ped-miR397 after transcription. With the increasing shoot height, the expression abundance of PeLAC10 was up-regulated and reached the maximum in 15 cm shoots, while that of ped-miR397 was relative lower and showed the minimum in 15 cm shoots. PeLAC10 was up-regulated obviously under both ABA (100 µmol L-1) and NaCl (400 mmol L-1) treatments, and it was down-regulated under the GA3 (100 µmol L-1) treatment. The transgenic Arabidopsis plants over-expressing PeLAC10 became slightly smaller and their petioles were shorter than those of Col-0. However, they had a stronger capacity in resistance to phenolic acids and drought besides higher lignin content in stems. These results indicated that overexpression of PeLAC10 was helpful to increase the content of lignin in transgenic Arabidopsis and improve the adaptability to phenolic acid and drought stresses.


Subject(s)
Laccase/genetics , Laccase/metabolism , Lignin/biosynthesis , Poaceae/genetics , Poaceae/metabolism , Stress, Physiological/physiology , Arabidopsis/genetics , Binding Sites , Droughts , Gene Expression Regulation, Plant , Genes, Plant/genetics , Hydroxybenzoates/pharmacology , Lignin/genetics , MicroRNAs , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Sequence Analysis , Stress, Physiological/drug effects , Transcriptome
10.
Biomolecules ; 9(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835882

ABSTRACT

: Homeobox (HB) genes play critical roles in regulating various aspects of plant growth and development. However, little is known about HB genes in bamboo. In this study, a total of 115 HB genes (PeHB001‒PeHB115) were identified from moso bamboo (Phyllostachys edulis) and grouped into 13 distinct classes (BEL, DDT, HD-ZIP I‒IV, KNOX, NDX, PHD, PINTOX, PLINC, SAWADEE, and WOX) based on the conserved domains and phylogenetic analysis. The number of members in the different classes ranged from 2 to 24, and they usually varied in terms of exon‒intron distribution pattern and length. There were 20 conserved motifs found in 115 PeHBs, with motif 1 being the most common. Gene ontology (GO) analysis showed that PeHBs had diverse molecular functions, with 19 PeHBs being annotated as having xylem development, xylem, and phloem pattern formation functions. Co-expression network analysis showed that 10 of the 19 PeHBs had co-expression correlations, and three members of the KNOX class were hub proteins that interacted with other transcription factors (TFs) such as MYB, bHLH, and OVATE, which were associated with lignin synthesis. Yeast two-hybridization results further proved that PeHB037 (BEL class) interacted with PeHB057 (KNOX class). Transcriptome expression profiling indicated that all PeHBs except PeHB017 were expressed in at least one of the seven tissues of moso bamboo, and 90 PeHBs were expressed in all the tissues. The qRT-PCR results of the 19 PeHBs showed that most of them were upregulated in shoots as the height increased. Moreover, a KNOX binding site was found in the promoters of the key genes involved in lignin synthesis such as Pe4CL, PeC3H, PeCCR, and PeCOMT, which had positive expression correlations with five KNOX genes. Similar results were found in winter bamboo shoots with prolonged storage time, which was consistent with the degree of lignification. These results provide basic data on PeHBs in moso bamboo, which will be helpful for future functional research on PeHBs with positive regulatory roles in the process of lignification.


Subject(s)
Gene Expression Regulation, Plant , Genes, Homeobox/genetics , Lignin/genetics , Lignin/metabolism , Plant Shoots/genetics , Sasa/genetics
11.
Cells ; 7(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400256

ABSTRACT

Water supply is essential for maintaining normal physiological function during the rapid growth of bamboo. Aquaporins (AQPs) play crucial roles in water transport for plant growth and development. Although 26 PeAQPs in bamboo have been reported, the aquaporin-led mechanism of maintaining diurnal water balance in bamboo shoots remains unclear. In this study, a total of 63 PeAQPs were identified, based on the updated genome of moso bamboo (Phyllostachys edulis), including 22 PePIPs, 20 PeTIPs, 17 PeNIPs, and 4 PeSIPs. All of the PeAQPs were differently expressed in 26 different tissues of moso bamboo, based on RNA sequencing (RNA-seq) data. The root pressure in shoots showed circadian rhythm changes, with positive values at night and negative values in the daytime. The quantitative real-time PCR (qRT-PCR) result showed that 25 PeAQPs were detected in the base part of the shoots, and most of them demonstrated diurnal rhythm changes. The expression levels of some PeAQPs were significantly correlated with the root pressure. Of the 86 sugar transport genes, 33 had positive co-expression relationships with 27 PeAQPs. Two root pressure-correlated PeAQPs, PeTIP4;1 and PeTIP4;2, were confirmed to be highly expressed in the parenchyma and epidermal cells of bamboo culm, and in the epidermis, pith, and primary xylem of bamboo roots by in situ hybridization. The authors' findings provide new insights and a possible aquaporin-led mechanism for bamboo fast growth.

12.
Gigascience ; 7(10)2018 10 01.
Article in English | MEDLINE | ID: mdl-30202850

ABSTRACT

Background: Bamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies. Results: Here, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo. Conclusions: These fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.


Subject(s)
Alternative Splicing , Chromosomes, Plant , Gene Expression Regulation, Plant , Genome, Plant , Poaceae/genetics , Computational Biology/methods , Evolution, Molecular , Genomics/methods , High-Throughput Nucleotide Sequencing , Lignin/biosynthesis , Molecular Sequence Annotation
13.
Physiol Plant ; 163(4): 459-471, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29314045

ABSTRACT

Higher plants have an array of photoprotection mechanisms alleviating the harmful effects of light. Non-photochemical quenching (NPQ) is one of the photoprotective mechanisms, which dissipates the excess of light energy absorbed in the light-harvesting complexes (LHCs) into thermal energy. The photosystem II subunit S (PsbS), a member of the LHC family thought to be present exclusively in higher plants, is supposed to activate NPQ through interactions with antenna proteins. However, the roles of PsbS in bamboo remain unclear. Here, two genes of bamboo (Phyllostachys edulis), PePsbS1 and PePsbS2, are investigated and functionally analyzed. PePsbS1 and PePsbS2 have a similar gene structure with three introns separated by two exons, which encode 269 and 268 amino acid residues, respectively. Tissue-specific analysis showed that PePsbS1 and PePsbS2 are highly expressed in leaf blade. Besides, they are both upregulated in the leaf blade when plantlets are submitted to an increased and prolonged light intensity, suggesting that they are light-induced. Western blot analysis indicated that the accumulation level of total PePsbSs is consistent with what obtained by quantitative real-time polymerase chain reaction for PePsbS1 and PePsbS2. Transgenic Arabidopsis plants overexpressing PePsbS1 and PePsbS2 both displayed an enhanced photoprotection. Moreover, the expression of PePsbS1 and PePsbS2 could both rescue the NPQ of Arabidopsis npq4 mutant, indicating that the PsbSs are functionally conserved between monocots and dicots. These results indicated that both PePsbS1 and PePsbS2 could circumvent photoinhibition and enhance photoprotection, which are key factors for bamboo's adaptation to different light environment.


Subject(s)
Photosystem II Protein Complex/genetics , Plant Proteins/genetics , Poaceae/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Hydrogen Peroxide/metabolism , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Superoxides/metabolism
14.
DNA Cell Biol ; 36(9): 747-758, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28686465

ABSTRACT

Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environmental stresses by involving in abscisic acid (ABA) biosynthesis and xanthophyll cycle. A full-length cDNA of PeZEP was isolated from moso bamboo (Phyllostachys edulis), which comprised of a 138-bp 5'-untranslated region (UTR), a 381-bp 3'-UTR, and a 2013-bp open reading frame (ORF) encoding a putative protein of 670 amino acids. PeZEP was mainly expressed in leaf blades and leaf sheaths, and less in roots and culms. The transcript level of PeZEP in bamboo leaf was elevated with the increasing light intensity. PeZEP was significantly upregulated in response to high light (HL: 1200 µmol·m-2·s-1) and reached to a higher level after 1 h treatment, and kept higher levels in the following hours. Besides, PeZEP was upregulated under high temperature (42°C), and downregulated under low temperature (4°C) and exogenous ABA treatment. The expression vector of PeZEP driven by CaMV 35S was constructed and transformed into Arabidopsis thaliana. The transgenic plants overexpressing PeZEP were generated and subjected to drought stress for morphological and physiological assays. Compared with Col-0, the transgenic plants demonstrated enhanced tolerance to drought stress, which appeared later wilting and higher survival rate. Moreover, higher value of Fv/Fm, higher activities of superoxide dismutase, peroxidase, and catalase, and lower concentration of malondialdehyde were also observed in transgenic plants. Transcript levels of AtP5CS and AtRD29b related to drought stress were enhanced in transgenic plants. These results indicated that PeZEP might play an important function in response to drought stress in bamboo.


Subject(s)
Oxidoreductases/genetics , Plant Proteins/genetics , Poaceae/genetics , Arabidopsis/genetics , Chlorophyll/chemistry , Chlorophyll/metabolism , Droughts , Fluorescence , Gene Expression Regulation, Plant , Oxidoreductases/metabolism , Phylogeny , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Stress, Physiological , Nicotiana/genetics
15.
Sci Rep ; 7: 46107, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383053

ABSTRACT

Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan.


Subject(s)
Arecaceae/anatomy & histology , Arecaceae/genetics , Microsatellite Repeats/genetics , Transcriptome/genetics , Base Sequence , Biomarkers/metabolism , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Markers , Molecular Sequence Annotation , Polymorphism, Genetic , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Sequence Analysis, DNA
16.
Plant Cell Rep ; 36(4): 597-609, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168515

ABSTRACT

KEY MESSAGE: PeTIP4;1-1, an aquaporin gene involved in bamboo shoot growth, is regulated by abiotic stresses. Overexpression of PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. Aquaporins play a central role in numerous physiological processes throughout plant growth and development. PeTIP4;1-1, an aquaporin gene isolated from moso bamboo (Phyllostachys edulis), comprises an open reading frame (ORF) of 756 bp encoding a peptide of 251 amino acids. The genomic sequence corresponding to the ORF of PeTIP4;1-1 was 1777 bp and contained three exons separated by two introns. PeTIP4;1-1 was constitutively expressed at the highest level in culms, and the expression level was elevated with increasing height of the bamboo shoot. PeTIP4;1-1 was significantly up-regulated in response to drought and salinity stresses in bamboo roots and leaves. To investigate the role of PeTIP4;1-1 in response to drought and salinity stresses, transgenic Arabidopsis plants overexpressing PeTIP4;1-1 under the control of CaMV 35S promoter were generated and subjected to morphological and physiological assays. Compared with Col-0, the transgenic plants showed enhanced tolerance to drought and salinity stresses and produced longer taproots, which had more green leaves, higher F v/F m and NPQ values, higher activities of SOD, POD and CAT, lower MDA concentration and higher water content. Transcript levels of three stress-related genes (AtP5CS, AtNHX1 and AtLEA) were enhanced. These results indicated that PeTIP4;1-1 might play an important function in response to drought and salinity stresses, and is a candidate gene for breeding of stress tolerance in other crops through genetic engineering.


Subject(s)
Aquaporins/genetics , Aquaporins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Poaceae/genetics
17.
DNA Cell Biol ; 35(11): 706-714, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27525704

ABSTRACT

UDP-galactose-4-epimerase (UGE) is a key enzyme involved in galactose metabolism by catalyzing the interconversion of UDP-glucose to UDP-galactose. The cDNA encoding UGE was isolated from Phyllostachys edulis by reverse transcription-polymerase chain reaction and by 5' and 3' rapid amplification of cDNA ends, and was designated as PeUGE. The full-length cDNA of PeUGE was 1778 bp, which contained an open reading frame (ORF) encoding a peptide of 420 amino acids, with a calculated molecular mass of 46.58 kDa and a theoretic isoelectric point of 9.07. The genomic sequence corresponding to the ORF of PeUGE was 2656 bp containing 10 exons separated by nine introns. Tissue-specific analysis showed that PeUGE was constitutively expressed with the highest level in shoots, which had an increasing trend with the growth of shoots. PeUGE was induced by abiotic stresses such as drought, salinity, and water stresses. Moreover, chlorophyll fluorescence parameters and lateral roots analysis of transgenic Arabidopsis thaliana plants overexpressing PeUGE systematically confirmed the crucial role of PeUGE in improving the tolerance to abiotic stresses. These results indicated that PeUGE might be one of the key genes involved in the biosynthesis of cell wall polysaccharides during the growth and development of bamboo and in response to stresses, which provided a candidate gene for molecular engineering to improve the quality of bamboo products.


Subject(s)
Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Poaceae/genetics , Sequence Homology, Amino Acid , Amino Acid Sequence/genetics , Cloning, Molecular , DNA, Complementary/genetics , Introns , Open Reading Frames/genetics , Plant Leaves/genetics
18.
Sci Rep ; 6: 27640, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27325361

ABSTRACT

GRAS family is one of plant specific transcription factors and plays diverse roles in the regulation of plant growth and development as well as in the plant disease resistance and abiotic stress responses. However, the investigation of GRAS family and multi-tissue gene expression profiles still remains unavailable in bamboo (Phyllostachys edulis). Here, we applied RNA-Seq analysis to monitor global transcriptional changes and investigate expression patterns in the five tissues of Ph. edulis, and analyzed a large-scale transcriptional events and patterns. Moreover, the tissue-specific genes and DEGs in different tissues were detected. For example, DEGs in panicle and leaf tissues were abundant in photosynthesis, glutathione, porphyrin and chlorophyll metabolism, whereas those in shoot and rhizome were majority in glycerophospholipid metabolism. In the portion of Ph. edulis GRAS (PeGRAS) analyses, we performed the analysis of phylogenetic, gene structure, conserved motifs, and analyzed the expression profiles of PeGRASs in response to high light and made a co-expression analysis. Additionally, the expression profiles of PeGRASs were validated using quantitative real-time PCR. Thus, PeGRASs based on dynamics profiles of gene expression is helpful in uncovering the specific biological functions which might be of critical values for bioengineering to improve bamboo breeding in future.


Subject(s)
Plant Proteins/biosynthesis , Sasa/genetics , Transcription Factors/biosynthesis , Transcriptome/genetics , Base Sequence , Breeding , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family/genetics , Organ Specificity/genetics , Photosynthesis/genetics , Plant Proteins/genetics , Sasa/growth & development , Tissue Distribution/genetics , Transcription Factors/genetics
19.
Plant Cell Rep ; 35(6): 1371-83, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27021381

ABSTRACT

KEY MESSAGE: PeSNAC1 , a stress-related NAC1 from Phyllostachys edulis , was characterized. Ectopic expression in Arabidopsis indicated that PeSNAC1 together with ped -miR164b participated in the regulation of organ boundaries and stress tolerance. NAC (NAM, ATAF1/2 and CUC2) participates in many different processes regulating plant growth, development, and stress response. A total of 125 NAC genes have been predicted in moso bamboo (Phyllostachys edulis), but their roles are poorly understood. PeSNAC1 targeted by ped-miR164b was focused for further study. The cleavage of PeSNAC1 mRNA guided by ped-miR164b was validated using RLM-5' RACE. Tissue-specific expression analysis demonstrated that ped-miR164b had a declining trend from root, sheath, leaf, to that of stem, which was opposite to that of PeSNAC1. Transgenic Arabidopsis plants overexpressing either PeSNAC1 (OX-PeSNAC1) or, ped-miR164b (OX-ped-miR164b) driven by the CaMV35S promoter were generated. OX-ped-miR164b plants showed similar phenotype of cuc2 mutants whose growth was seriously suppressed. Compared with Col-0, sense OX-PeSNAC1 plants grew rapidly and flowered earlier, whereas antisense plants grew slowly and exhibited delayed flowering. Sense OX-PeSNAC1 plants had the greatest number of lateral roots, while antisense OX-PeSNAC1 and OX-ped-miR164b plants had fewer lateral roots than Col-0. Under NaCl and PEG6000 stresses, survival rates were higher and F v/F m values declined more slowly in sense OX-PeSNAC1 plants than in Col-0, with lower survival rates and a more rapid decrease in F v/F m values conversely observed in antisense OX-PeSNAC1 and OX-ped-miR164b plants. These findings indicated that ped-miR164b-targeted PeSNAC1 may play key roles in plant development and tolerance to salinity and drought stresses.


Subject(s)
Genes, Plant/physiology , Sasa/genetics , Arabidopsis/genetics , Dehydration/genetics , Dehydration/physiopathology , Ectopic Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , MicroRNAs/genetics , MicroRNAs/physiology , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Real-Time Polymerase Chain Reaction , Salt Tolerance/genetics , Salt Tolerance/physiology , Sasa/physiology
20.
Mol Biol Rep ; 43(5): 437-50, 2016 May.
Article in English | MEDLINE | ID: mdl-26993482

ABSTRACT

Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics.


Subject(s)
Aquaporins/genetics , Genome, Plant , Plant Proteins/genetics , Poaceae/genetics , Gene Expression Profiling , Genes, Plant , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...