Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 804: 150117, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34508938

ABSTRACT

Plastic debris into the environment is a growing threat for the ecosystems and human health. The seafood sector is particularly concerned because it generates plastic losses and can be endangered by plastic contamination. Life cycle assessment (LCA) does not properly consider plastic losses and related impacts, which is a problem in order to find relevant mitigation strategies without burden shifting. This work proposes a methodology for quantifying flows of plastics from the life cycle of the seafood products to the environment. It is based on loss rate and final release rate considering a pre-fate approach as proposed by the Plastic Leak Project. They are defined for 5 types of micro and macro plastic losses: lost fishing gears, marine coatings, plastic pellets, tire abrasion and plastic mismanaged at the end-of-life. The methodology is validated with a case study applied to French fish products for which relevant data are available in the Agribalyse 3.0 database. Results show that average plastic losses are from 75 mg to 4345 mg per kg of fish at the consumer, depending on the species and the related fishing method. The main plastic losses come from lost fishing gears (macroplastics) and tire abrasion (microplastics). Results show high variability: when mismanaged, plastic packaging at the end-of-life (macroplastics) is the main loss to the environment. As a next step the methodology is to be applied to other fish or shellfish products, or directly implemented in a life cycle inventory database. Further research should characterize the related impacts to the environment when life cycle impact assessment methodologies will be available, and identify eco-design solutions to decrease the major flows to the environment identified.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fish Products , Humans , Life Cycle Stages , Seafood , Waste Products/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33360652

ABSTRACT

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Subject(s)
Climate Change , Seafood , Animals , Life Cycle Stages
3.
Int J Life Cycle Assess ; 26(3): 511-527, 2021.
Article in English | MEDLINE | ID: mdl-33349738

ABSTRACT

Purpose: Scientific Life Cycle Assessment (LCA) literature provides some examples of LCA teaching in higher education, but not a structured overview of LCA teaching contents and related competencies. Hence this paper aims at assessing and highlighting trends in LCA learning outcomes, teaching approaches and developed content used to equip graduates for their future professional practices in sustainability. Methods: Based on a literature review on teaching LCA in higher education and a collaborative consensus building approach through expert group panel discussions, an overview of LCA learning and competency levels with related teaching contents and corresponding workload is developed. The levels are built on the European Credit Transfer and Accumulation System (ECTS) and Bloom's taxonomy of learning. Results and discussion: The paper frames five LCA learning and competency levels that differ in terms of study program integration, workload, cognitive domain categories, learning outcomes, and envisioned professional skills. It furthermore provides insights into teaching approaches and content, including software use, related to these levels. Conclusions and recommendations: This paper encourages and supports higher educational bodies to implement a minimum of 'life cycle literacy' into students' curriculum across various domains by increasing the availability, visibility and quality of their teaching on life cycle thinking and LCA.

4.
Sci Total Environ ; 667: 780-791, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30851611

ABSTRACT

The space sector is a new area of development for Life Cycle Assessment (LCA) studies. However, it deals with strong particularities which complicate the use of LCA. One of the most important is that the space industry is the only human activity crossing all stages of the atmosphere during the launch event or the atmospheric re-entry. As a result, interactions occur not only with the natural environment but also with the orbital environment during the use phase and the end-of-life of space missions. In this context, there is a lack of indicators and methods to characterise the complete life-cycle of space systems including their impact on the orbital environment. The end-of-life of spacecraft is of particular concern: space debris proliferation is today a concrete threat for all space activities. Therefore, the proposed work aims at characterising the orbital environment in term of space debris crossing the orbital resource. A complete methodology and a set of characterisation factors at midpoint level are provided. They are based on two factors: (i) the exposure to space debris in a given orbit and (ii) the severity of a potential spacecraft break-up leading to the release of new debris in the orbital environment. Then, we demonstrate the feasibility of such approach through three theoretical post-mission disposal scenarios based on the Sentinel-1A mission parameters. The results are discussed against the propellant consumption needed in each case with the purpose of addressing potential 'burden shifting' that could occur between the Earth environment and the orbital one.

5.
Sci Total Environ ; 595: 642-650, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28402917

ABSTRACT

A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use.

6.
Water Res ; 90: 128-140, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26724447

ABSTRACT

A framework and an associated modeling tool to perform life cycle assessment (LCA) of urban water system, namely the WaLA model, has been recently developed. In this paper, the WaLA model is applied to a real case study: the urban water system of the Paris suburban area, in France. It aims to verify the capacity of the model to provide environmental insights to stakeholder's issues related to future trends influencing the system (e.g., evolution of water demand, increasing water scarcity) or policy responses (e.g., choices of water resources and technologies). This is achieved by evaluating a baseline scenario for 2012 and several forecasting scenarios for 2022 and 2050. The scenarios are designed through the modeling tool WaLA, which is implemented in Simulink/Matlab: it combines components representing the different technologies, users and resources of the UWS. The life cycle inventories of the technologies and users components include water quantity and quality changes, specific operation (electricity, chemicals) and infrastructures data (construction materials). The methods selected for the LCIA are midpoint ILCD, midpoint water deprivation impacts at the sub-river basin scale, and endpoint Impact 2002+. The results of the baseline scenario show that wastewater treatment plants have the highest impacts compared to drinking water production and distribution, as traditionally encountered in LCA of UWS. The results of the forecasting scenarios show important changes in water deprivation impacts due to water management choices or effects of climate change. They also enable to identify tradeoffs with other impact categories and to compare several scenarios. It suggests the capacity of the model to deliver information for decision making about future policies.


Subject(s)
Computer Simulation , Conservation of Natural Resources/methods , Waste Disposal, Fluid/methods , Water Purification/methods , Water Supply/methods , Cities , Climate Change , Drinking Water , Paris , Waste Disposal, Fluid/economics , Water Purification/economics , Water Resources , Water Supply/economics
7.
Water Res ; 88: 69-82, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26474151

ABSTRACT

The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data.


Subject(s)
Cities , Conservation of Natural Resources/methods , Models, Theoretical , Systems Analysis , Water Purification/methods , Water Supply , Waste Disposal, Fluid/methods
8.
Water Res ; 67: 187-202, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25282088

ABSTRACT

Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts).


Subject(s)
Cities , Conservation of Natural Resources/methods , Drinking Water/standards , Systems Analysis , Water Purification/methods , Water Supply
9.
Water Res ; 57: 20-30, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24704901

ABSTRACT

Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas.


Subject(s)
Environment , Waste Disposal, Fluid/methods , Water/chemistry , Models, Theoretical , Water Pollution, Chemical/analysis
10.
Environ Sci Technol ; 47(24): 14242-9, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24256030

ABSTRACT

Physical water deprivation at the midpoint level is assessed in water-related LCIA methods using water scarcity indicators (e.g., withdrawal-to-availability and consumption-to-availability) at the river basin scale. Although these indicators represent a great step forward in the assessment of water-use-related impacts in LCA, significant challenges still remain in improving their accuracy and relevance. This paper presents a methodology that can be used to derive midpoint characterization factors for water deprivation taking into account downstream cascade effects within a single river basin. This effect is considered at a finer scale because a river basin must be split into different subunits. The proposed framework is based on a two-step approach. First, water scarcity is defined at the sub-river basin scale with the consumption-to-availability (CTA) ratio, and second, characterization factors for water deprivation (CFWD) are calculated, integrating the effects on downstream sub-river basins. The sub-river basin CTA and CFWD were computed based on runoff data, water consumption data and a water balance for two different river basins. The results show significant differences between the CFWD in a given river basin, depending on the upstream or downstream position. Finally, an illustrative example is presented, in which different land planning scenarios, taking into account additional water consumption in a city, are assessed. Our work demonstrates how crucial it is to localize the withdrawal and release positions within a river basin.


Subject(s)
Rivers , Water Supply , Water , Ecology/methods , France , Geography , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...