Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828824

ABSTRACT

Ethane (C2H6) is anticipated to be the most stable compound within the carbon-hydrogen system under the 100 GPa pressure range. Nevertheless, the properties of ethane under pressure are still poorly documented. Here, we present a comprehensive study of the structural and vibrational properties of C2H6 in a diamond anvil cell at pressures up to 150 GPa. To obtain detailed data, ethane single-crystal was grown in a helium pressure-transmitting medium. Utilizing single-crystal x-ray diffraction, the distortion mechanism between the tetragonal and monoclinic phases, occurring over the 3.2-5.2 GPa pressure range, is disclosed. Subsequently, no phase transition is observed up to 150 GPa. The accurately measured compression curve is compared to various computational approximations. The vibrational modes measured by Raman spectroscopy and infrared absorption are well identified, and their evolution is well reproduced by ab initio calculations. In particular, an unusual anticrossing phenomenon occurs near 40 GPa between a rocking and a stretching mode, likely attributable to intermolecular interactions through hydrogen bonding.

2.
Phys Rev Lett ; 129(3): 035501, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35905331

ABSTRACT

How are nuclear quantum fluctuations affecting the properties of dense hydrogen approaching metallization? We report here Raman spectroscopy and synchrotron infrared absorption measurements on deuterium up to 460 GPa at 80 K. By comparing to a previous similar study on hydrogen, isotopic effects on the electronic and vibrational properties in phase III are disclosed. Also, evidence of a probable transition to metal deuterium is observed, shifted by about 35 GPa compared to that in hydrogen. Advanced calculations, quantifying a reduction of the band gap caused by nuclear quantum fluctuations, are compared to the present data.

3.
Phys Rev Lett ; 128(16): 165701, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35522490

ABSTRACT

Structural transformation of hot dense water ice is investigated by combining synchrotron x-ray diffraction and a laser-heating diamond anvil cell above 25 GPa. A transition from the body-centered-cubic (bcc) to face-centered-cubic (fcc) oxygen atoms sublattices is observed from 57 GPa and 1500 K to 166 GPa and 2500 K. That is the structural signature of the transition to fcc superionic (fcc SI) ice. The sign of the density discontinuity at the transition is obtained and a phase diagram is disclosed, showing an extended fcc SI stability field. Present data also constrain the stability field of the bcc superionic (bcc SI) ice up to 100 GPa at least. The current understanding of warm dense water ice based on ab initio simulations is discussed in the light of present data.

4.
RSC Adv ; 11(41): 25274-25283, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-35478871

ABSTRACT

The pressure-induced structural changes in LiBH4 and in NaBH4 have been investigated experimentally up to 290 GPa by coupling Raman spectroscopy, infrared absorption spectroscopy and synchrotron X-ray diffraction. This data set is also analysed in the light of Density Functional Theory calculations performed up to 600 GPa. The [BH4]- unit appears to be remarkably resistant under pressure. NaBH4 remains stable in the known Pnma γ-phase up to 200 GPa and calculations predict a transition to a metallic polymeric C2/c phase at about 480 GPa. LiBH4 is confirmed to exhibit a richer polymorphism. A new Pnma orthorhombic phase VI is found to be stable above 60 GPa and there are hints of a possible phase VII above 160 GPa. DFT calculations predict that two other high pressure LiBH4 phases should appear at about 290 and 428 GPa. A very slight solubility of H2 inside phases II, III and V of LiBH4 is observed. A NaBH4(H2)0.5 complex is predicted to be stable above 150 GPa.

5.
Nature ; 577(7792): 631-635, 2020 01.
Article in English | MEDLINE | ID: mdl-31996819

ABSTRACT

Hydrogen has been an essential element in the development of atomic, molecular and condensed matter physics1. It is predicted that hydrogen should have a metal state2; however, understanding the properties of dense hydrogen has been more complex than originally thought, because under extreme conditions the electrons and protons are strongly coupled to each other and ultimately must both be treated as quantum particles3,4. Therefore, how and when molecular solid hydrogen may transform into a metal is an open question. Although the quest for metal hydrogen has pushed major developments in modern experimental high-pressure physics, the various claims of its observation remain unconfirmed5-7. Here a discontinuous change of the direct bandgap of hydrogen, from 0.6 electronvolts to below 0.1 electronvolts, is observed near 425 gigapascals. This result is most probably associated with the formation of the metallic state because the nucleus zero-point energy is larger than this lowest bandgap value. Pressures above 400 gigapascals are achieved with the recently developed toroidal diamond anvil cell8, and the structural changes and electronic properties of dense solid hydrogen at 80 kelvin are probed using synchrotron infrared absorption spectroscopy. The continuous downward shifts of the vibron wavenumber and the direct bandgap with increased pressure point to the stability of phase-III hydrogen up to 425 gigapascals. The present data suggest that metallization of hydrogen proceeds within the molecular solid, in good agreement with previous calculations that capture many-body electronic correlations9.

6.
Science ; 366(6471): 1359-1362, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31831664

ABSTRACT

Pressure can be used to tune the interplay among structural, electronic, and magnetic interactions in materials. High pressures are usually applied in the diamond anvil cell, making it difficult to study the magnetic properties of a micrometer-sized sample. We report a method for spatially resolved optical magnetometry based on imaging a layer of nitrogen-vacancy (NV) centers created at the surface of a diamond anvil. We illustrate the method using two sets of measurements realized at room temperature and low temperature, respectively: the pressure evolution of the magnetization of an iron bead up to 30 gigapascals showing the iron ferromagnetic collapse and the detection of the superconducting transition of magnesium dibromide at 7 gigapascals.

7.
Science ; 363(6433)2019 03 22.
Article in English | MEDLINE | ID: mdl-30898900

ABSTRACT

In their comment, Desjarlais et al claim that a small temperature drop occurs after isentropic compression of fluid deuterium through the first-order insulator-metal transition. We show that their calculations do not correspond to the experimental thermodynamic path, and that thermodynamic integrations with parameters from first-principles calculations produce results in agreement with our original estimate of the temperature drop.


Subject(s)
Metals , Deuterium , Pressure , Temperature , Thermodynamics
8.
Science ; 361(6403): 677-682, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30115805

ABSTRACT

Dense fluid metallic hydrogen occupies the interiors of Jupiter, Saturn, and many extrasolar planets, where pressures reach millions of atmospheres. Planetary structure models must describe accurately the transition from the outer molecular envelopes to the interior metallic regions. We report optical measurements of dynamically compressed fluid deuterium to 600 gigapascals (GPa) that reveal an increasing refractive index, the onset of absorption of visible light near 150 GPa, and a transition to metal-like reflectivity (exceeding 30%) near 200 GPa, all at temperatures below 2000 kelvin. Our measurements and analysis address existing discrepancies between static and dynamic experiments for the insulator-metal transition in dense fluid hydrogen isotopes. They also provide new benchmarks for the theoretical calculations used to construct planetary models.

9.
Inorg Chem ; 57(17): 10685-10693, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30137975

ABSTRACT

A wide variety of Li-N compounds are predicted as stable under pressure and associated with various nitrogen anionic moieties. Accordingly, the LiN5 compound was recently synthesized at 45 GPa by the direct reaction of nitrogen and lithium. In this study, we present an experimental investigation of the Li-N binary phase diagram from ambient pressure up to 73.6 GPa. The samples loaded in the diamond anvil cells were constituted of pure lithium pieces embedded in a much greater quantity of molecular nitrogen and, at incremental pressure steps, were laser-heated to produce the thermodynamically favored solid. The following compounds are observed: Li3N, LiN2, LiN as well as LiN5, and their pressure stability domain is disclosed. Two are synthesized for the first time, namely  Cmcm LiN and P63/ mmc LiN2. Both are structurally resolved and characterized by X-ray diffraction and Raman spectroscopy measurements. Their high bulk modulus is characteristic of charged N2 dimers.

10.
Nat Commun ; 9(1): 2913, 2018 07 25.
Article in English | MEDLINE | ID: mdl-30046093

ABSTRACT

Over the past 60 years, the diamond anvil cell (DAC) has been developed into a widespread high static pressure device. The adaptation of laboratory and synchrotron analytical techniques to DAC enables a detailed exploration in the 100 GPa range. The strain of the anvils under high load explains the 400 GPa limit of the conventional DAC. Here we show a toroidal shape for a diamond anvil tip that enables to extend the DAC use toward the terapascal pressure range. The toroidal-DAC keeps the assets for a complete, reproducible, and accurate characterization of materials, from solids to gases. Raman signal from the diamond anvil or X-ray signal from the rhenium gasket allow measurement of pressure. Here, the equations of state of gold, aluminum, and argon are measured with X-ray diffraction. The data are compared with recent measurements under similar conditions by two other approaches, the double-stage DAC and the dynamic ramp compression.

11.
Phys Rev Lett ; 119(23): 235701, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29286706

ABSTRACT

Synchrotron x-ray diffraction measurements of nitrogen are performed up to 120 GPa to determine the melting curve and the structural changes of the solid and liquid phases along it. The melting temperature exhibits a monotonic increase up to the triple point where the epsilon molecular solid, the cubic gauche covalent solid, and the fluid meet at 116 GPa, 2080 K. Above, the stability of the cubic gauche phase induces a sharp increase of the melting curve. The structural data on liquid nitrogen show that the latter remains molecular over the whole probed domain, which contradicts the prediction of a liquid-liquid transition at 88 GPa, 2000 K. These findings thus largely revisit the phase diagram of hot dense nitrogen and challenge the current understanding of this model system.

12.
Sci Rep ; 6: 26402, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27246145

ABSTRACT

Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.

13.
Proc Natl Acad Sci U S A ; 112(25): 7673-6, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26056306

ABSTRACT

The prediction of novel lithium hydrides with nontraditional stoichiometries at high pressure has been seminal for highlighting a promising line of research on hydrogen-dense materials. Here, we report the evidences of the disproportionation of LiH above 130 GPa to form lithium hydrides containing H2 units. Measurements have been performed using the nonperturbing technique of synchrotron infrared absorption. The observed vibron frequencies match the predictions for LiH2 and LiH6. These polyhydrides remain insulating up to 215 GPa. A disproportionation mechanism based on the diffusion of lithium into the diamond anvil and a stratification of the sample into LiH6/LiH2/LiH layers is proposed. Polyhydrides containing an H2 sublattice do exist and could be ubiquitously stable at high pressure.

14.
Nat Commun ; 5: 5739, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25484135

ABSTRACT

New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

15.
Phys Rev Lett ; 113(2): 025702, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062210

ABSTRACT

The binary phase diagram of N(2)-Ne mixtures has been measured at 296 K by visual observation and Raman spectroscopy. The topology of the phase diagram points to the existence of the stoichiometric compound N(2))(6)Ne(7). Its structure has been solved by single-crystal synchrotron x-ray diffraction. The N(2) molecules form a guest lattice that hosts the Ne atoms. This insertion compound can be viewed as a clathrate with the centers of the N(2) molecules forming distorted dodecahedron cages, each enclosing 14 Ne atoms. Remarkably, the N(2))(6)Ne(7) compound is somehow the first clathrate organized by the quadrupolar interaction.

16.
Phys Rev Lett ; 113(26): 265504, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615354

ABSTRACT

The Fe-H system has been investigated by combined x-ray diffraction studies and total energy calculations at pressures up to 136 GPa. The experiments involve laser annealing of hydrogen-embedded iron in a diamond anvil cell. Two new FeHx compounds, with x∼2 and x=3, are discovered at 67 and 86 GPa, respectively. Their crystal structures are identified (unit cell and Fe positional parameters from x-ray diffraction, H positional parameters from ab initio calculations) as tetragonal with space group I4/mmm for FeH(∼2) and as simple cubic with space group Pm3m for FeH3. Large metastability regimes are observed that allowed to measure the P(V) equation of state at room temperature of FeH, FeH(∼2), and FeH3.

17.
Rev Sci Instrum ; 84(6): 063901, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822351

ABSTRACT

We report the first application of a multichannel collimator (MCC) to perform quantitative structure factor measurements of dense low-Z fluids in a diamond anvil cell (DAC) using synchrotron x-ray diffraction. The MCC design, initially developed for the Paris-Edinburgh large volume press geometry, has been modified for use with diamond anvil cells. A good selectivity of the diffracted signal of the dense fluid sample is obtained due to a large rejection of the Compton diffusion from the diamond anvils. The signal to background ratio is significantly improved. We modify previously developed analytical techniques for quantitative measurement of the structure factor of fluids in DACs [J. H. Eggert, G. Weck, P. Loubeyre, and M. Mezouar, Phys. Rev. B 65, 174105 (2002)] to account for the contribution of the MCC. We present experimental results on liquids argon and hydrogen at 296 K to validate our method and test its limits, respectively.

18.
Phys Rev Lett ; 109(15): 155303, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102325

ABSTRACT

Quantum nuclear zero-point motions in solid H(2) and D(2) under pressure are investigated at 80 K up to 160 GPa by first-principles path-integral molecular dynamics calculations. Molecular orientations are well defined in phase II of D(2), while solid H(2) exhibits large and very asymmetric angular quantum fluctuations in this phase, with possible rotation in the (bc) plane, making it difficult to associate a well-identified single classical structure. The mechanism for the transition to phase III is also described. Existing structural data support this microscopic interpretation.

19.
Phys Rev Lett ; 104(25): 255701, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20867395

ABSTRACT

In situ x-ray diffraction has been used to characterize the structural modifications of tantalum samples under intense laser irradiation, up to 135 GPa in a diamond anvil cell. Melting data points are obtained that do not confirm the previously reported anomalously low melting curve. Two effects are identified that might alter the melting determination of refractory metals such as Ta under high static pressures. First, a strong chemical reactivity of Ta with the pressure transmitting media and with carbon diffusing out from the surface of the anvils is observed. Second, pyrometry measurements can be distorted when the pressure medium melts. The strong divergence between ab initio calculations, shock measurements and static determination is resolved here and hence many theoretical interpretations are ruled out. Finally, the body-centered cubic phase is stable over the pressure-temperature range investigated.

20.
Proc Natl Acad Sci U S A ; 104(22): 9172-7, 2007 May 29.
Article in English | MEDLINE | ID: mdl-17494771

ABSTRACT

Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1-1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding.

SELECTION OF CITATIONS
SEARCH DETAIL
...