Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38738986

ABSTRACT

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.


Subject(s)
Behavior, Animal , Animals , Humans , Male , Behavior, Animal/physiology , Female , Psychomotor Performance/physiology , Adult , Postural Balance/physiology , Young Adult , Macaca mulatta
2.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37205497

ABSTRACT

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different control objectives. Given only observations of behavior, is it possible to infer the control strategy that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular control strategy. This study presents a threepronged approach to infer an animal's control strategy from behavior. First, both humans and monkeys performed a virtual balancing task for which different control objectives could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control strategies to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer strategies from animal subjects. Being able to positively identify a subject's control objective from behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

3.
Plant Physiol ; 186(1): 581-598, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33619553

ABSTRACT

Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.


Subject(s)
Glycine max/genetics , Membrane Transport Proteins/genetics , Nitrogen Fixation , Plant Proteins/genetics , Rhizobium/physiology , Biological Transport , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Glycine max/metabolism , Glycine max/microbiology , Symbiosis
4.
BMC Genomics ; 20(1): 207, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30866821

ABSTRACT

BACKGROUND: Halomicronema hongdechloris was the first cyanobacterium to be identified that produces chlorophyll (Chl) f. It contains Chl a and uses phycobiliproteins as its major light-harvesting components under white light conditions. However, under far-red light conditions H. hongdechloris produces Chl f and red-shifted phycobiliprotein complexes to absorb and use far-red light. In this study, we report the genomic sequence of H. hongdechloris and use quantitative proteomic approaches to confirm the deduced metabolic pathways as well as metabolic and photosynthetic changes in response to different photo-autotrophic conditions. RESULTS: The whole genome of H. hongdechloris was sequenced using three different technologies and assembled into a single circular scaffold with a genome size of 5,577,845 bp. The assembled genome has 54.6% GC content and encodes 5273 proteins covering 83.5% of the DNA sequence. Using Tandem Mass Tag labelling, the total proteome of H. hongdechloris grown under different light conditions was analyzed. A total of 1816 proteins were identified, with photosynthetic proteins accounting for 24% of the total mass spectral readings, of which 35% are phycobiliproteins. The proteomic data showed that essential cellular metabolic reactions remain unchanged under shifted light conditions. The largest differences in protein content between white and far-red light conditions reflect the changes to photosynthetic complexes, shifting from a standard phycobilisome and Chl a-based light harvesting system under white light, to modified, red-shifted phycobilisomes and Chl f-containing photosystems under far-red light conditions. CONCLUSION: We demonstrate that essential cellular metabolic reactions under different light conditions remain constant, including most of the enzymes in chlorophyll biosynthesis and photosynthetic carbon fixation. The changed light conditions cause significant changes in the make-up of photosynthetic protein complexes to improve photosynthetic light capture and reaction efficiencies. The integration of the global proteome with the genome sequence highlights that cyanobacterial adaptation strategies are focused on optimizing light capture and utilization, with minimal changes in other metabolic pathways. Our quantitative proteomic approach has enabled a deeper understanding of both the stability and the flexibility of cellular metabolic networks of H. hongdechloris in response to changes in its environment.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/growth & development , Proteomics/methods , Whole Genome Sequencing/methods , Adaptation, Physiological , Bacterial Proteins/genetics , Carbon Cycle , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Evolution, Molecular , Genome Size , Light , Molecular Sequence Annotation , Photosynthesis , Phycobiliproteins/genetics , Phycobiliproteins/metabolism , Phylogeny , Tandem Mass Spectrometry
6.
J Neurophysiol ; 120(5): 2164-2181, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29947593

ABSTRACT

Everyday behaviors require that we interact with the environment, using sensory information in an ongoing manner to guide our actions. Yet, by design, many of the tasks used in primate neurophysiology laboratories can be performed with limited sensory guidance. As a consequence, our knowledge about the neural mechanisms of motor control is largely limited to the feedforward aspects of the motor command. To study the feedback aspects of volitional motor control, we adapted the critical stability task (CST) from the human performance literature (Jex H, McDonnell J, Phatak A. IEEE Trans Hum Factors Electron 7: 138-145, 1966). In the CST, our monkey subjects interact with an inherently unstable (i.e., divergent) virtual system and must generate sensory-guided actions to stabilize it about an equilibrium point. The difficulty of the CST is determined by a single parameter, which allows us to quantitatively establish the limits of performance in the task for different sensory feedback conditions. Two monkeys learned to perform the CST with visual or vibrotactile feedback. Performance was better under visual feedback, as expected, but both monkeys were able to utilize vibrotactile feedback alone to successfully perform the CST. We also observed changes in behavioral strategy as the task became more challenging. The CST will have value for basic science investigations of the neural basis of sensory-motor integration during ongoing actions, and it may also provide value for the design and testing of bidirectional brain computer interface systems. NEW & NOTEWORTHY Currently, most behavioral tasks used in motor neurophysiology studies require primates to make short-duration, stereotyped movements that do not necessitate sensory feedback. To improve our understanding of sensorimotor integration, and to engineer meaningful artificial sensory feedback systems for brain-computer interfaces, it is crucial to have a task that requires sensory feedback for good control. The critical stability task demands that sensory information be used to guide long-duration movements.


Subject(s)
Feedback, Physiological , Models, Neurological , Motor Activity , Neurons, Afferent/physiology , Neurons, Efferent/physiology , Psychomotor Performance , Animals , Haplorhini , Postural Balance
7.
Otol Neurotol ; 39(5): e349-e356, 2018 06.
Article in English | MEDLINE | ID: mdl-29595580

ABSTRACT

HYPOTHESIS: People with unilateral vestibular hypofunction (UVH) would have increased postural sway and slower reaction times while using vibrotactile feedback (VTF) during dual-task conditions compared with age-matched controls. BACKGROUND: VTF has been shown to improve real-time balance performance in persons with vestibular disorders. Future use of this technology outside of the laboratory environment as a real-time balance aid requires that using VTF during dual-tasking scenarios be studied. METHOD: Nine people with UVH and nine age-matched controls participated in a study focused on assessing the effects of a secondary cognitive task and sensory integration conditions on the root-mean-square of center of pressure (RMS COP) while using VTF. Reaction times from the secondary cognitive task were used to assess the effects of VTF, and sensory integration conditions on the attention required to perform the task. RESULTS: The results showed that there was no group difference between individuals with UVH and age-matched controls on balance performance while using VTF during dual-task conditions. Using VTF significantly degraded the reaction time performance in both groups, and the participants with UVH had slower reaction times compared with controls. CONCLUSION: People with UVH showed the ability to use VTF to control balance during dual-task conditions, but more attentional resources were needed to perform the secondary cognitive tasks while using VTF.


Subject(s)
Feedback, Sensory , Physical Stimulation/methods , Postural Balance/physiology , Reaction Time/physiology , Vestibular Diseases/therapy , Adult , Aged , Attention/physiology , Female , Humans , Male , Middle Aged , Pressure , Vestibular Diseases/physiopathology , Vibration
8.
J Biol Chem ; 292(47): 19279-19289, 2017 11 24.
Article in English | MEDLINE | ID: mdl-28972142

ABSTRACT

Chlorophylls (Chls) are the most important cofactors for capturing solar energy to drive photosynthetic reactions. Five spectral types of Chls have been identified to date, with Chl f having the most red-shifted absorption maximum because of a C21-formyl group substitution of Chl f However, the biochemical provenance of this formyl group is unknown. Here, we used a stable isotope labeling technique (18O and 2H) to determine the origin of the C21-formyl group of Chl f and to verify whether Chl f is synthesized from Chl a in the cyanobacterial species Halomicronema hongdechloris. In the presence of either H218O or 18O2, the origin of oxygen atoms in the newly synthesized chlorophylls was investigated. The pigments were isolated with HPLC, followed by MS analysis. We found that the oxygen atom of the C21-formyl group originates from molecular oxygen and not from H2O. Moreover, we examined the kinetics of the labeling of Chl a and Chl f from H. hongdechloris grown in 50% D2O-seawater medium under different light conditions. When cells were shifted from white light D2O-seawater medium to far-red light H2O-seawater medium, the observed deuteration in Chl f indicated that Chl(ide) a is the precursor of Chl f Taken together, our results advance our understanding of the biosynthesis pathway of the chlorophylls and the formation of the formyl group in Chl f.


Subject(s)
Chlorophyll/analogs & derivatives , Cyanobacteria/metabolism , Oxygen/metabolism , Chlorophyll/isolation & purification , Chlorophyll/metabolism , Isotope Labeling , Kinetics , Light , Photosynthesis
9.
Gait Posture ; 57: 193-198, 2017 09.
Article in English | MEDLINE | ID: mdl-28662465

ABSTRACT

Cognitive tasks impact postural control when performed concurrently as dual-tasks. This is presumed to result from capacity limitations in relevant brain regions. We used functional near-infrared spectroscopy (fNIRS) to measure brain activation of the left motor, temporal, and dorsal-lateral prefrontal brain regions of younger (n=6) and older (n=10) adults. Brain activation was measured during an auditory choice reaction task (CRT) and standing on a dynamic posturography platform, both as single-tasks and concurrently as dual-task. Body sway was assessed by median absolute deviation (MAD) of anterior-posterior translation of the center of mass (COM). Brain activation was measured as changes in oxy-hemoglobin by fNIRS. During both single- and dual-task conditions, we found that older adults had greater brain activation relative to younger adults. During dual task performance, the total activation was less than expected from the sum of individual conditions for both age groups, indicating a dual-task interference (reduction in younger adults=53% [p=0.02]; in older adults=53%; [p=0.008]). This reduction was greater for the activation attributable to the postural task (reduction younger adults=75% [p=0.03]; older adults=59% [p=0.005]) compared to the CRT task (reduction younger adults=10%, [p=0.6]; older adults=7.3%, [p=0.5]) in both age groups. Activation reduction was not accompanied by any significant changes in body sway in either group (older adults: single-task MAD=0.94cm, dual-task MAD=1.10cm, p=0.20; younger adults: single-task RMS=0.95cm, dual-task MAD=1.08cm, p=0.14). Our results indicate that neural resources devoted to postural control are reduced under dual-task conditions that engage attention.


Subject(s)
Aging/physiology , Attention/physiology , Brain/diagnostic imaging , Multitasking Behavior/physiology , Neuroimaging , Postural Balance/physiology , Spectroscopy, Near-Infrared , Adult , Aged , Aged, 80 and over , Brain/physiology , Female , Humans , Male , Task Performance and Analysis , Young Adult
10.
Microorganisms ; 5(1)2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28230808

ABSTRACT

Rhodoferax antarcticus is an Antarctic purple nonsulfur bacterium and the only characterized anoxygenic phototroph that grows best below 20 °C. We present here a high-quality draft genome of Rfx. antarcticus strain ANT.BRT, isolated from an Antarctic microbial mat. The circular chromosome (3.8 Mbp) of Rfx. antarcticus has a 59.1% guanine + cytosine (GC) content and contains 4036 open reading frames. In addition, the bacterium contains a sizable plasmid (198.6 kbp, 48.4% GC with 226 open reading frames) that comprises about 5% of the total genetic content. Surprisingly, genes encoding light-harvesting complexes 1 and 3 (LH1 and LH3), but not light-harvesting complex 2 (LH2), were identified in the photosynthesis gene cluster of the Rfx. antarcticus genome, a feature that is unique among purple phototrophs. Consistent with physiological studies that showed a strong capacity for nitrogen fixation in Rfx. antarcticus, a nitrogen fixation gene cluster encoding a molybdenum-type nitrogenase was present, but no alternative nitrogenases were identified despite the cold-active phenotype of this phototroph. Genes encoding two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase were present in the Rfx. antarcticus genome, a feature that likely provides autotrophic flexibility under varying environmental conditions. Lastly, genes for assembly of both type IV pili and flagella are present, with the latter showing an unusual degree of clustering. This report represents the first genomic analysis of a psychrophilic anoxygenic phototroph and provides a glimpse of the genetic basis for maintaining a phototrophic lifestyle in a permanently cold, yet highly variable, environment.

11.
Sci Rep ; 6: 27547, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27282102

ABSTRACT

Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed.


Subject(s)
Chlorophyll/genetics , Cyanobacteria/genetics , Photosynthesis/genetics , Phytochrome/genetics , Chlorophyll/chemistry , Cyanobacteria/chemistry , Cysteine/chemistry , Cysteine/genetics , Genome, Bacterial/genetics , Histidine Kinase/genetics , Histidine Kinase/metabolism , Light , Photoreceptors, Microbial/genetics , Photosynthesis/radiation effects , Phytochrome/chemistry , Signal Transduction/radiation effects
12.
Biochim Biophys Acta ; 1857(1): 107-114, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514405

ABSTRACT

Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/ß allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.


Subject(s)
Chlorophyll/analogs & derivatives , Cyanobacteria/metabolism , Phycobilisomes/physiology , Chlorophyll/physiology , Photosynthesis , Phycobilisomes/chemistry
13.
J Acoust Soc Am ; 138(5): 3220-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26627796

ABSTRACT

This work considers the design of optimal, energy-constrained transmit signals for active sensing for the case when the designer has incomplete or uncertain knowledge of the target and/or environment. The mathematical formulation is that of a multi-objective optimization problem, wherein one can incorporate a plurality of potential targets, interference, or clutter models and in doing so take advantage of the wide range of results in the literature related to modeling each. It is shown, via simulation, that when the objective function of the optimization problem is chosen to maximize the minimum (i.e., maxmin) probability of detection among all possible model combinations, the optimal waveforms obtained are advantageous. The advantage results because the maxmin waveforms judiciously allocate energy to spectral regions where each of the target models respond strongly and each of the environmental models affect minimal detection performance degradation. In particular, improved detection performance is shown compared to linear frequency modulated transmit signals and compared to signals designed with the wrong target spectrum assumed. Additionally, it is shown that the maxmin design yields performance comparable to an optimal design matched to the correct target/environmental model. Finally, it is proven that the maxmin problem formulation is convex.

14.
J Acoust Soc Am ; 138(2): 1122-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26328726

ABSTRACT

A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.

15.
Mol Cell Proteomics ; 14(5): 1301-22, 2015 May.
Article in English | MEDLINE | ID: mdl-25724908

ABSTRACT

Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.


Subject(s)
Glycine max/chemistry , Proteome/analysis , Rhizobium/chemistry , Root Nodules, Plant/chemistry , Amino Acid Sequence , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Carrier Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Liquid-Liquid Extraction , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/isolation & purification , Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Plant Cells/chemistry , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Rhizobium/genetics , Rhizobium/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Glycine max/genetics , Glycine max/metabolism , Symbiosis/physiology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/isolation & purification , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
16.
J Neurophysiol ; 113(7): 2127-36, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25589585

ABSTRACT

Vibrotactile feedback (VTF) has been shown to improve balance performance in healthy people and people with vestibular disorders in a single-task experimental condition. It is unclear how age-related changes in balance affect the ability to use VTF and if there are different attentional requirements for old and young adults when using VTF. Twenty younger and 20 older subjects participated in this two-visit study to examine the effect of age, VTF, sensory condition, cognitive task, duration of time, and visit on postural and cognitive performance. Postural performance outcome measures included root mean square of center of pressure (COP) and trunk tilt, and cognitive performance was assessed using the reaction time (RT) from an auditory choice RT task. The results showed that compared with younger adults, older adults had an increase in COP in fixed platform conditions when using VTF, although they were able to reduce COP during sway-referenced platform conditions. Older adults also did not benefit fully from using VTF in their first session. The RTs for the secondary cognitive tasks increased significantly while using the VTF in both younger and older adults. Older adults had a larger increase compared with younger adults, suggesting that greater attentional demands were required in older adults when using VTF information. Future training protocols for VTF should take into consideration the effect of aging.


Subject(s)
Aging/physiology , Cognition/physiology , Feedback, Physiological/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Vibration , Adult , Aged , Aged, 80 and over , Aging/psychology , Female , Humans , Male , Reaction Time/physiology , Touch/physiology , Young Adult
17.
Sci Rep ; 4: 6069, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25119484

ABSTRACT

The chemical structural differences distinguishing chlorophylls in oxygenic photosynthetic organisms are either formyl substitution (chlorophyll b, d, and f) or the degree of unsaturation (8-vinyl chlorophyll a and b) of a side chain of the macrocycle compared with chlorophyll a. We conducted an investigation of the conversion of vinyl to formyl groups among naturally occurring chlorophylls. We demonstrated the in vitro oxidative cleavage of vinyl side groups to yield formyl groups through the aid of a thiol-containing compound in aqueous reaction mixture at room temperature. Heme is required as a catalyst in aqueous solution but is not required in methanolic reaction mixture. The conversion of vinyl- to formyl- groups is independent of their position on the macrocycle, as we observed oxidative cleavages of both 3-vinyl and 8-vinyl side chains to yield formyl groups. Three new chlorophyll derivatives were synthesised using 8-vinyl chlorophyll a as substrate: 8-vinyl chlorophyll d, [8-formyl]-chlorophyll a, and [3,8-diformyl]-chlorophyll a. The structural and spectral properties will provide a signature that may aid in identification of the novel chlorophyll derivatives in natural systems. The ease of conversion of vinyl- to formyl- in chlorophylls demonstrated here has implications regarding the biosynthetic mechanism of chlorophyll d in vivo.


Subject(s)
Chlorophyll/chemistry , Formates/chemistry , Photosynthesis/physiology , Prochlorococcus/metabolism , Vinyl Compounds/chemistry , Catalysis , Chlorophyll/analogs & derivatives , Chlorophyll/biosynthesis , Chlorophyll A , Heme/metabolism , Mercaptoethanol/chemistry , Protoporphyrins/metabolism
18.
Proc Natl Acad Sci U S A ; 111(13): 4814-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24707045

ABSTRACT

Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.


Subject(s)
Ammonium Compounds/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cation Transport Proteins/metabolism , Glycine max/growth & development , Glycine max/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Soybean Proteins/metabolism , Biological Transport , Cell Membrane/metabolism , DNA, Plant/metabolism , Gene Expression Regulation, Plant , Protein Binding , Root Nodules, Plant/cytology , Root Nodules, Plant/ultrastructure , Saccharomyces cerevisiae/metabolism , Glycine max/genetics , Glycine max/ultrastructure
19.
Front Plant Sci ; 5: 67, 2014.
Article in English | MEDLINE | ID: mdl-24616731

ABSTRACT

A chlorophyll f containing cyanobacterium, Halomicronema hongdechloris (H. hongdechloris) was isolated from a stromatolite cyanobacterial community. The extremely slow growth rate of H. hongdechloris has hindered research on this newly isolated cyanobacterium and the investigation of chlorophyll f-photosynthesis. Therefore, optimizing H. hongdechloris culture conditions has become an essential requirement for future research. This work investigated the effects of various culture conditions, essential nutrients and light environments to determine the optimal growth conditions for H. hongdechloris and the biosynthetic rate of chlorophyll f. Based on the total chlorophyll concentration, an optimal growth rate of 0.22 ± 0.02 day(-1)(doubling time: 3.1 ± 0.3 days) was observed when cells were grown under continuous illumination with far-red light with an intensity of 20 µE at 32°C in modified K + ES seawater (pH 8.0) with additional nitrogen and phosphor supplements. High performance liquid chromatography on H. hongdechloris pigments confirmed that chlorophyll a is the major chlorophyll and chlorophyll f constitutes ~10% of the total chlorophyll from cells grown under far-red light. Fluorescence confocal image analysis demonstrated changes of photosynthetic membranes and the distribution of photopigments in response to different light conditions. The total photosynthetic oxygen evolution yield per cell showed no changes under different light conditions, which confirms the involvement of chlorophyll f in oxygenic photosynthesis. The implications of the presence of chlorophyll f in H. hongdechloris and its relationship with the ambient light environment are discussed.

20.
Brain Res ; 1555: 20-7, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24480476

ABSTRACT

Human postural control, which relies on information from vestibular, visual, and proprioceptive inputs, degrades with aging, and falls are the leading cause of injury in older adults. In the last decade, functional neuroimaging studies have been performed in order to gain a greater understanding of the supraspinal control of balance and walking. It is known that active balancing involves cortical and subcortical structures in the brain, but neuroimaging of the brain during these tasks has been limited. The study of the effect of aging on the functional neuroimaging of posture and gait has only recently been undertaken. In this study, an MRI-compatible force platform was developed to simulate active balance control. Eleven healthy participants (mean age 75±5 yr) performed an active balance simulation task by using visual feedback to control anterior-posterior center of pressure movements generated by ankle dorsiflexor (DF) and plantarflexor (PF) movements, in a pattern consistent with upright stance control. An additional ankle DF/PF exertion task was performed. During both the active balance simulation and the ankle DF/PF tasks, the bilateral fusiform gyrus and middle temporal gyrus, right inferior, middle, and superior frontal gyrii were activated. No areas were found to be more active during the ankle DF/PF task when compared with the active balance simulation task. When compared to the ankle DF/PF task, the active balance simulation task elicited greater activation in the middle and superior temporal gyrii, insula, and a large cluster that covered the corpus callosum, superior and medial frontal gyrii, as well as the anterior cingulate and caudate nucleus. This study demonstrates the utility in using a force platform to simulate active balance control during MR imaging that elicits activity in cortical regions consistent with studies of active balance and mental imagery of balance.


Subject(s)
Brain/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...