Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 69(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38262052

ABSTRACT

Objective.Skeletal muscles are organized into distinct layers and exhibit anisotropic characteristics across various scales. Assessing the arrangement of skeletal muscles may provide valuable biomarkers for diagnosing muscle-related pathologies and evaluating the efficacy of clinical interventions.Approach. In this study, we propose a novel ultrafast ultrasound sequence constituted of steered pushing beams was proposed for ultrasound elastography applications in transverse isotropic muscle. Based on the propagation of the shear wave vertical mode, it is possible to fit the experimental results to retrieve in the same imaging plane, the shear modulus parallel to fibers as well as the elastic anisotropy factor (ratio of Young's moduli times the shear modulus perpendicular to fibers).Main results. The technique was demonstratedin vitroin phantoms andex vivoin fusiform beef muscles. At last, the technique was appliedin vivoon fusiform muscles (biceps brachii) and mono-pennate muscles (gastrocnemius medialis) during stretching and contraction.Significance. This novel sequence provides access to new structural and mechanical biomarkers of muscle tissue, including the elastic anisotropy factor, within the same imaging plane. Additionally, it enables the investigation of multiples parameters during muscle active and passive length changes.


Subject(s)
Elasticity Imaging Techniques , Muscle, Skeletal , Animals , Cattle , Anisotropy , Ultrasonography , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Elastic Modulus/physiology , Elasticity Imaging Techniques/methods , Biomarkers
2.
J Mech Behav Biomed Mater ; 150: 106325, 2024 02.
Article in English | MEDLINE | ID: mdl-38150816

ABSTRACT

Acoustoelasticity theory describes propagation of shear waves in uniaxially stressed medium and allows the retrieval of nonlinear elastic coefficients of tissues. In transverse isotropic medium such as muscles the theory leads to 9 different configurations of propagating shear waves (stress axis vs. fibers axis vs. shear wave polarization axis vs. shear wave propagation axis). In this work we propose to use 4 configurations to quantify these nonlinear parameters ex vivo and in vivo. Ex vivo experiments combining ultrasound shear wave elastography and mechanical testing were conducted on iliopsoas pig muscles to quantify three third-order nonlinear coefficients A, H and K that are possibly linked to the architectural structure of muscles. In vivo experiments were performed with human volunteers on biceps brachii during a stretching exercise on an ergometer. A combination of the third order nonlinear elastic parameters was assessed. The knowledge of this nonlinear elastic parameters paves the way to quantify in vivo the local forces produced by muscle during exercise, contraction or movements.


Subject(s)
Elasticity Imaging Techniques , Humans , Animals , Swine , Phantoms, Imaging , Elasticity , Ultrasonography , Muscle, Skeletal/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL