Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Nature ; 596(7871): 285-290, 2021 08.
Article in English | MEDLINE | ID: mdl-34321666

ABSTRACT

Ageing is driven by a loss of cellular integrity1. Given the major role of ubiquitin modifications in cell function2, here we assess the link between ubiquitination and ageing by quantifying whole-proteome ubiquitin signatures in Caenorhabditis elegans. We find a remodelling of the ubiquitinated proteome during ageing, which is ameliorated by longevity paradigms such as dietary restriction and reduced insulin signalling. Notably, ageing causes a global loss of ubiquitination that is triggered by increased deubiquitinase activity. Because ubiquitination can tag proteins for recognition by the proteasome3, a fundamental question is whether deficits in targeted degradation influence longevity. By integrating data from worms with a defective proteasome, we identify proteasomal targets that accumulate with age owing to decreased ubiquitination and subsequent degradation. Lowering the levels of age-dysregulated proteasome targets prolongs longevity, whereas preventing their degradation shortens lifespan. Among the proteasomal targets, we find the IFB-2 intermediate filament4 and the EPS-8 modulator of RAC signalling5. While increased levels of IFB-2 promote the loss of intestinal integrity and bacterial colonization, upregulation of EPS-8 hyperactivates RAC in muscle and neurons, and leads to alterations in the actin cytoskeleton and protein kinase JNK. In summary, age-related changes in targeted degradation of structural and regulatory proteins across tissues determine longevity.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/metabolism , Proteome/metabolism , Ubiquitin/metabolism , Ubiquitination , Actin Cytoskeleton/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/metabolism , Cytoskeletal Proteins/metabolism , Intestines/microbiology , Longevity , Muscles/metabolism , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Proteome/chemistry , rac GTP-Binding Proteins/metabolism
3.
Curr Opin Cell Biol ; 67: 46-55, 2020 12.
Article in English | MEDLINE | ID: mdl-32890906

ABSTRACT

The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.


Subject(s)
Proteostasis , Stem Cells/metabolism , Aging/metabolism , Animals , Cell Differentiation , Fertility , Germ Cells/cytology , Humans
4.
Nat Commun ; 11(1): 644, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005828

ABSTRACT

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Liver/metabolism , MafG Transcription Factor/genetics , Obesity/genetics , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Aged , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , MafG Transcription Factor/metabolism , Male , Mice , Middle Aged , Obesity/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Autophagy ; 16(2): 313-333, 2020 02.
Article in English | MEDLINE | ID: mdl-30990357

ABSTRACT

Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential.Abbreviations: 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.


Subject(s)
Cell Differentiation , Neoplastic Stem Cells/pathology , Activating Transcription Factor 6/metabolism , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cardiolipins/metabolism , Caspase Inhibitors/pharmacology , Cell Compartmentation , Cell Differentiation/drug effects , Cell Line, Tumor , Endosomes/metabolism , Endosomes/ultrastructure , Eukaryotic Initiation Factor-2/metabolism , Lipids/chemistry , Lysosomes/metabolism , Lysosomes/ultrastructure , Mice , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/ultrastructure , Phosphatidylinositol 3-Kinases/metabolism , Proteolysis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Unfolded Protein Response/drug effects
6.
Nat Commun ; 10(1): 5648, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827090

ABSTRACT

Autophagy can degrade cargos with the help of selective autophagy receptors such as p62/SQSTM1, which facilitates the degradation of ubiquitinated cargo. While the process of autophagy has been linked to aging, the impact of selective autophagy in lifespan regulation remains unclear. We have recently shown in Caenorhabditis elegans that transcript levels of sqst-1/p62 increase upon a hormetic heat shock, suggesting a role of SQST-1/p62 in stress response and aging. Here, we find that sqst-1/p62 is required for hormetic benefits of heat shock, including longevity, improved neuronal proteostasis, and autophagy induction. Furthermore, overexpression of SQST-1/p62 is sufficient to induce autophagy in distinct tissues, extend lifespan, and improve the fitness of mutants with defects in proteostasis in an autophagy-dependent manner. Collectively, these findings illustrate that increased expression of a selective autophagy receptor is sufficient to induce autophagy, enhance proteostasis and extend longevity, and demonstrate an important role for sqst-1/p62 in proteotoxic stress responses.


Subject(s)
Autophagy , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Proteostasis , Animals , Caenorhabditis elegans/genetics , Female , Heat-Shock Response , Hormesis , Longevity , Male
7.
Nat Commun ; 9(1): 3622, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190464

ABSTRACT

Increasing brown adipose tissue (BAT) thermogenesis in mice and humans improves metabolic health and understanding BAT function is of interest for novel approaches to counteract obesity. The role of long noncoding RNAs (lncRNAs) in these processes remains elusive. We observed maternally expressed, imprinted lncRNA H19 increased upon cold-activation and decreased in obesity in BAT. Inverse correlations of H19 with BMI were also observed in humans. H19 overexpression promoted, while silencing of H19 impaired adipogenesis, oxidative metabolism and mitochondrial respiration in brown but not white adipocytes. In vivo, H19 overexpression protected against DIO, improved insulin sensitivity and mitochondrial biogenesis, whereas fat H19 loss sensitized towards HFD weight gains. Strikingly, paternally expressed genes (PEG) were largely absent from BAT and we demonstrated that H19 recruits PEG-inactivating H19-MBD1 complexes and acts as BAT-selective PEG gatekeeper. This has implications for our understanding how monoallelic gene expression affects metabolism in rodents and, potentially, humans.


Subject(s)
Adipose Tissue, Brown/physiology , Genomic Imprinting , Obesity/genetics , RNA, Long Noncoding/genetics , Adipose Tissue, Brown/pathology , Adipose Tissue, White/physiology , Adult , Aged , Aged, 80 and over , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Female , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Obesity/etiology
8.
Eur J Clin Invest ; 48(4)2018 Apr.
Article in English | MEDLINE | ID: mdl-29383696

ABSTRACT

BACKGROUND: Expression of TRAP1, a member of the HSP90 chaperone family, has been implicated in tumour protective effects, based on its differential mitochondrial localization and function. DESIGN: This work was designed to provide new insights into the pathways involved in TRAP1-provided cytoprotection on NSCLC. For this, TRAP1-depleted A549 human NSCLC cells and MRC-5 normal lung fibroblasts were produced using a siRNA approach and main cellular quality control mechanisms were investigated. RESULTS: TRAP1-depleted A549 cells displayed decreased cell viability likely due to impaired mitochondrial function including decreased ATP/AMP ratio, oxygen consumption and membrane potential, as well as increased apoptotic indicators. Furthermore, the negative impact of TRAP1 depletion on mitochondrial function was not observed in normal MRC-5 lung cells, which might be due to the differential intracellular localization of the chaperone in tumour versus normal cells. Additionally, A549 TRAP1-depleted cells showed increased autophagic flux. Functionally, autophagy inhibition resulted in decreased cell viability in both TRAP1-expressing and TRAP1-depleted tumour cells with minor effects on MRC-5 cells. Conversely, autophagy stimulation decreased cell viability of both A549 and MRC-5 TRAP1-expressing cells while in A549 TRAP1-depleted cells, increased autophagy augmented viability. CONCLUSIONS: Our results show that even though TRAP1 depletion affects both normal MRC-5 and tumour A549 cell proliferation, inhibition of autophagy per se led to a decrease in tumour cell mass, while having a reduced effect on the normal cell line. The strategy of targeting TRAP1 in NSCLC shows future potential therapeutic applications.


Subject(s)
Autophagy/physiology , Carcinoma, Non-Small-Cell Lung/pathology , HSP90 Heat-Shock Proteins/physiology , Lung Neoplasms/pathology , Apoptosis/physiology , Cell Death/physiology , Cell Survival , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/deficiency , Humans , Mitochondria/pathology , Mitochondrial Diseases/pathology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Transfection , Tumor Cells, Cultured
9.
Semin Cancer Biol ; 47: 18-28, 2017 12.
Article in English | MEDLINE | ID: mdl-28673608

ABSTRACT

Cancer stem cells (CSCs) have been suggested to be responsible for tumor re-growth and relapse. Physiological and morphological knowledge of CSCs may be essential for the development of new therapeutic strategies targeting cancer development, progression, and recurrence. Current research is focused on a deeper understanding of CSCs metabolic profiles, taking into consideration their energy demands. Energy metabolism and mitochondrial function are important factors operating on stemness maintenance and cell fate specification. Due to the role of mitochondria as central hubs in the overall cell metabolism and death and survival pathways, research on their physiology in CSCs is of paramount importance to decipher mechanisms underlying their therapy-resistant phenotype. In this review, we focus on CSCs mitochondrial biology and mitochondria-related signaling pathways that contribute to CSCs survival and maintenance, thereby representing possible therapeutic targets.


Subject(s)
Mitochondria/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Animals , Energy Metabolism/drug effects , Humans , Mitochondria/drug effects , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/etiology , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects , Stem Cells/metabolism
10.
Oncotarget ; 6(19): 17081-96, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26025920

ABSTRACT

Although melatonin oncostatic and cytotoxic effects have been described in different types of cancer cells, the specific mechanisms leading to its antitumoral effects and their metabolic context specificity are still not completely understood. Here, we evaluated the effects of melatonin in P19 embryonal carcinoma stem cells (CSCs) and in their differentiated counterparts, cultured in either high glucose medium or in a galactose (glucose-free) medium which leads to glycolytic suppression and increased mitochondrial metabolism. We found that highly glycolytic P19 CSCs were less susceptible to melatonin antitumoral effects while cell populations relying on oxidative metabolism for ATP production were more affected. The observed antiproliferative action of melatonin was associated with an arrest at S-phase, decreased oxygen consumption, down-regulation of BCL-2 expression and an increase in oxidative stress culminating with caspase-3-independent cell death. Interestingly, the combined treatment of melatonin and dichloroacetate had a synergistic effect in cells grown in the galactose medium and resulted in an inhibitory effect in the highly resistant P19 CSCs. Melatonin appears to exert its antiproliferative activity in P19 carcinoma cells through a mitochondrially-mediated action which in turn allows the amplification of the effects of dichloroacetate, even in cells with a more glycolytic phenotype.


Subject(s)
Antineoplastic Agents/pharmacology , Embryonal Carcinoma Stem Cells/drug effects , Melatonin/pharmacology , Neoplastic Stem Cells/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Embryonal Carcinoma Stem Cells/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Neoplastic Stem Cells/metabolism
11.
Curr Med Chem ; 22(20): 2438-57, 2015.
Article in English | MEDLINE | ID: mdl-25666790

ABSTRACT

Mitochondria are organelles which play an important role not only in cellular metabolism but also in controlling pathways related with cell death, ionic and redox regulation. Alterations in mitochondrial metabolism are implicated in a variety of diseases, including cancer. Cellular and mitochondrial metabolism are both altered during the different stages of tumor development. As cancer cells have altered metabolic profiles, these alterations are a valid and promising target for anti-cancer agents. We hereby review several molecules that are in different stages of development and which target mitochondria in cancer cells. However, not all compounds are efficiently delivered into mitochondria, especially due to the difficulty of these agents to cross the membranes that surround the organelle, contributing to a loss of effectiveness and specificity. This led to the development of effective strategies aimed at delivering useful cargo to mitochondria, including the use of delocalized lipophilic cations coupled to useful molecules, or peptides that insert in mitochondrial membranes. Although several of those targeting strategies have still a very limited use against cancer cells, we present here the advantages and disadvantages of each combination.


Subject(s)
Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Cell Proliferation/drug effects , Humans , Neoplasms/metabolism , Reactive Oxygen Species/metabolism
12.
Article in English | MEDLINE | ID: mdl-23360288

ABSTRACT

Complete knowledge about the evolution of the carcinogenic process has to include cancer stem cells (CSCs), which are essential to understand tumor occurrence, recurrence, and also its reduction rate after radio- and/or chemotherapeutic treatments. Understanding CSCs physiology and metabolism may be crucial for the development of novel effective therapies. Therefore, being mitochondria an undeniable target for cancer therapy and a central hub in metabolism and cell and death decisions, it is essential to take this organelle into account and explore its actions and involvements in the context of CSCs physiology. In this review, we focus on recent patents and discoveries about mitochondrial bioenergetics and physiology of CSCs. A full understanding of the role of mitochondrial activity in CSCs and the creation of new strategies, methods and discoveries to support actual treatments with novel ones are of pivotal importance in order to ultimately eradicate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Mitochondria/drug effects , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Animals , Drug Design , Energy Metabolism/drug effects , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxidation-Reduction , Patents as Topic
13.
Food Chem Toxicol ; 50(11): 4199-208, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22902826

ABSTRACT

BACKGROUND: Fagara leprieuri (FL), Fagara xanthoxyloïdes (FX), Mondia whitei (MW) and Xylopia aethiopica (XA) are used in many African countries as food spices or in traditional medicine to treat several maladies. In this work, we (a) investigate whether the crude spice extracts present selective cytotoxicity for breast cancer cell lines and (b) investigate whether the same extracts affect the bioenergetics and calcium susceptibility of isolated liver mitochondrial fractions. RESULTS: All extracts were cytotoxic to the cell lines studied, with the exception of MW, which was less toxic for a normal cell line. Interestingly, some of the extracts did not depolarize mitochondria in intact breast cancer MCF-7 cells, although this effect was observed in a normal breast cancer cell line (MCF-12A). All extracts increased hepatic mitochondrial state 2/4 respiration and decreased the respiratory control ratio and the transmembrane electric potential. Also, the extracts induced the mitochondrial permeability transition (MPT). CONCLUSIONS: Mitochondrial toxicity may be part of the mechanism by which the spices tested cause inhibition of proliferation and death in the cell lines tested. This study also warrants caution in the excessive use of these spices for human consumption.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Mitochondria, Liver/drug effects , Plant Extracts/pharmacology , Spices/toxicity , Africa , Animals , Apoptosis/drug effects , Breast Neoplasms , Caspase 3/metabolism , Cell Proliferation/drug effects , Cell Respiration/drug effects , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells/drug effects , Male , Medicine, African Traditional , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/toxicity , Rats , Rats, Wistar , Rutaceae/toxicity , Toxicity Tests , Xylopia/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...