Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 342: 118233, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37276616

ABSTRACT

Recycling nutrients helps to reduce the environmental impact of agriculture and contributes to alleviating the effects of global climate change. A recent trend in sugarcane cultivation is the application of concentrated vinasse (CV) combined with fertilizers into an organo-mineral formulation to improve logistics, reduce costs and foster the circular economy. However, the implications of the application of such organo-mineral formulation in sugarcane fields are unclear. In this study, we evaluated the effects of the organo-mineral formulation containing granular urea (UR), and a nitrification inhibitor (NI) on crop yields, NH3 volatilization, and N2O emissions. Field experiments were conducted during two fertilization seasons, dry and wet, and the treatments were: control; UR; UR + NI; CV; CV + UR; and CV + UR + NI. CV was applied at 7 m3 ha-1. The treatments (except control and CV) were balanced to receive the same amount of N and K. Compared with UR, the organo-mineral formulation of CV + UR decreased NH3 volatilization losses from 7% to 4% in the dry season and from 3.5% to 0.5% in the wet season. Conversely, compared with UR, N2O emissions increased significantly (p ≤ 0.05) in CV + UR in the wet season from 1% to 2% of applied N. In the dry season, no differences were observed. The addition of NI was effective in mitigating N2O emissions in both seasons. Emission reductions ranged from 43 to 48% in the dry season and from 71 to 84%, in the wet season. Fertilization with UR or the organo-mineral formulation influenced sugarcane yield only in the dry season, with the highest yield in CV + UR. NI did not affect crop yield. In general, emission intensities (kg CO2eq Mg-1 of stalk) were highest in CV + UR. We conclude that the organo-mineral formulation reduced NH3 losses and increased N2O emissions compared with regular solid fertilizer and that NI was effective for mitigating N2O emissions.


Subject(s)
Agriculture , Fertilizers , Saccharum , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen , Nitrous Oxide/analysis , Soil , Urea , Volatilization
2.
Environ Microbiol ; 21(4): 1241-1254, 2019 04.
Article in English | MEDLINE | ID: mdl-30735001

ABSTRACT

The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2 O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2 O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2 O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2 O-producing AOB Nitrosospira with N2 O, NO3 - , NH4 + , water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3 - , NH4 + and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4 + , which suggests different drivers. These results support the co-occurrence of non-N2 O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2 O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.


Subject(s)
Archaea/drug effects , Guanidines/pharmacology , Nitrosomonadaceae/drug effects , Nitrous Oxide/metabolism , Soil Microbiology , Ammonia/metabolism , Archaea/genetics , Bacteria/drug effects , Bacteria/genetics , Fertilizers/analysis , Nitrification/drug effects , Nitrosomonadaceae/genetics , Oxidation-Reduction , Pyrazoles/pharmacology , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Tropical Climate
3.
Biotechnol Biofuels ; 11: 270, 2018.
Article in English | MEDLINE | ID: mdl-30305843

ABSTRACT

[This corrects the article DOI: 10.1186/s13068-018-1036-9.].

4.
Front Microbiol ; 9: 674, 2018.
Article in English | MEDLINE | ID: mdl-29692763

ABSTRACT

Organic vinasse, a residue produced during bioethanol production, increases nitrous oxide (N2O) emissions when applied with inorganic nitrogen (N) fertilizer in soil. The present study investigated the role of the ammonia-oxidizing bacteria (AOB) community on the N2O emissions in soils amended with organic vinasse (CV: concentrated and V: non-concentrated) plus inorganic N fertilizer. Soil samples and N2O emissions were evaluated at 11, 19, and 45 days after fertilizer application, and the bacterial and archaea gene (amoA) encoding the ammonia monooxygenase enzyme, bacterial denitrifier (nirK, nirS, and nosZ) genes and total bacteria were quantified by real time PCR. We also employed a deep amoA amplicon sequencing approach to evaluate the effect of treatment on the community structure and diversity of the soil AOB community. Both vinasse types applied with inorganic N application increased the total N2O emissions and the abundance of AOB. Nitrosospira sp. was the dominant AOB in the soil and was correlated with N2O emissions. However, the diversity and the community structure of AOB did not change with vinasse and inorganic N fertilizer amendment. The results highlight the importance of residues and fertilizer management in sustainable agriculture and can be used as a reference and an input tool to determine good management practices for organic fertilization.

5.
Biotechnol Biofuels ; 11: 48, 2018.
Article in English | MEDLINE | ID: mdl-29483941

ABSTRACT

BACKGROUND: The production of 1 L of ethanol from sugarcane generates up to 12 L of vinasse, which is a liquid waste containing an as-yet uncharacterized microbial assemblage. Most vinasse is destined for use as a fertilizer on the sugarcane fields because of the high organic and K content; however, increased N2O emissions have been observed when vinasse is co-applied with inorganic N fertilizers. Here we aimed to characterize the microbial assemblage of vinasse to determine the gene potential of vinasse microbes for contributing to negative environmental effects during fertirrigation and/or to the obstruction of bioethanol fermentation. RESULTS: We measured chemical characteristics and extracted total DNA from six vinasse batches taken over 1.5 years from a bioethanol and sugar mill in Sao Paulo State. The vinasse microbial assemblage was characterized by low alpha diversity with 5-15 species across the six vinasses. The core genus was Lactobacillus. The top six represented bacterial genera across the samples were Lactobacillus, Megasphaera and Mitsuokella (Phylum Firmicutes, 35-97% of sample reads); Arcobacter and Alcaligenes (Phylum Proteobacteria, 0-40%); Dysgonomonas (Phylum Bacteroidetes, 0-53%); and Bifidobacterium (Phylum Actinobacteria, 0-18%). Potential genes for denitrification but not nitrification were identified in the vinasse metagenomes, with putative nirK and nosZ genes the most represented. Binning resulted in 38 large bins with between 36.0 and 99.3% completeness, and five small mobile element bins. Of the large bins, 53% could be classified at the phylum level as Firmicutes, 15% as Proteobacteria, 13% as unknown phyla, 13% as Bacteroidetes and 6% as Actinobacteria. The large bins spanned a range of potential denitrifiers; moreover, the genetic repertoires of all the large bins included the presence of genes involved in acetate, CO2, ethanol, H2O2, and lactose metabolism; for many of the large bins, genes related to the metabolism of mannitol, xylose, butyric acid, cellulose, sucrose, "3-hydroxy" fatty acids and antibiotic resistance were present based on the annotations. In total, 21 vinasse bacterial draft genomes were submitted to the genome repository. CONCLUSIONS: Identification of the gene repertoires of vinasse bacteria and assemblages supported the idea that organic carbon and nitrogen present in vinasse together with microbiological variation of vinasse might lead to varying patterns of N2O emissions during fertirrigation. Furthermore, we uncovered draft genomes of novel strains of known bioethanol contaminants, as well as draft genomes unknown at the phylum level. This study will aid efforts to improve bioethanol production efficiency and sugarcane agriculture sustainability.

6.
Sci Rep ; 6: 30349, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27460335

ABSTRACT

Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.


Subject(s)
Ammonia/metabolism , Fertilizers/adverse effects , Greenhouse Gases/chemistry , Microbiota , Nitrous Oxide/analysis , Soil Microbiology , Nitrogen Cycle , Nitrogen Fixation , Nitrous Oxide/metabolism , Soil/chemistry , Tropical Climate , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...