Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 25727-25739, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38742469

ABSTRACT

The development of engineered nanomaterials has been considered a promising strategy to control oral infections. In this study, silver-embedded carbon nitrides (Ag@g-CN) were synthesized and tested against Candida albicans, investigating their antifungal action and biocompatibility in animal cells. Ag@g-CN was synthesized by a simple one-pot thermal polymerization technique and characterized by various analytical techniques. X-ray diffraction (XRD) analysis revealed slight alterations in the crystal structure of g-CN upon the incorporation of Ag. Fourier transform infrared (FT-IR) spectroscopy confirmed the presence of Ag-N bonds, indicating successful silver incorporation and potential interactions with g-CN's amino groups. UV-vis spectroscopy demonstrated a red shift in the absorption edge of Ag@g-CN compared with g-CN, attributed to the surface plasmon resonance effect of silver nanoparticles. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed the 2D layered sheet like morphology of both materials. The Ag 3d peaks found in X-ray photoelectron spectroscopy (XPS) confirmed the presence of metallic Ag0 nanoparticles in Ag@g-CN. The Ag@g-CN materials exhibited high antifungal activity against reference and oral clinical strains of C. albicans, with minimal inhibitory concentration (MIC) ranges between 16-256 µg/mL. The mechanism of Ag@g-CN on C. albicans was attributed to the disruption of the membrane integrity and disturbance of the biofilm. In addition, the Ag@g-CN material showed good biocompatibility in the fibroblastic cell line and in Galleria mellonella, with no apparent cytotoxicity observed at a concentration up to 1000 µg/mL. These findings demonstrate the potential of the Ag@g-CN material as an effective and safe antifungal agent for the treatment of oral fungal infections.


Subject(s)
Antifungal Agents , Candida albicans , Metal Nanoparticles , Silver , Candida albicans/drug effects , Silver/chemistry , Silver/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Animals , Microbial Sensitivity Tests , Nitrogen Compounds/chemistry , Nitrogen Compounds/pharmacology , Nitrogen Compounds/toxicity , Mice , Nitriles
2.
Front Immunol ; 15: 1347318, 2024.
Article in English | MEDLINE | ID: mdl-38500881

ABSTRACT

Immune checkpoint pathways, i.e., coinhibitory pathways expressed as feedback following immune activation, are crucial for controlling an excessive immune response. Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) are the central classical checkpoint inhibitory (CPI) molecules used for the control of neoplasms and some infectious diseases, including some fungal infections. As the immunosuppression of severe paracoccidioidomycosis (PCM), a chronic granulomatous fungal disease, was shown to be associated with the expression of coinhibitory molecules, we hypothesized that the inhibition of CTLA-4 and PD-1 could have a beneficial effect on pulmonary PCM. To this end, C57BL/6 mice were infected with Paracoccidioides brasiliensis yeasts and treated with monoclonal antibodies (mAbs) α-CTLA-4, α-PD-1, control IgG, or PBS. We verified that blockade of CTLA-4 and PD-1 reduced the fungal load in the lungs and fungal dissemination to the liver and spleen and decreased the size of pulmonary lesions, resulting in increased survival of mice. Compared with PBS-treated infected mice, significantly increased levels of many pro- and anti-inflammatory cytokines were observed in the lungs of α-CTLA-4-treated mice, but a drastic reduction in the liver was observed following PD-1 blockade. In the lungs of α-CPI and IgG-treated mice, there were no changes in the frequency of inflammatory leukocytes, but a significant reduction in the total number of these cells was observed. Compared with PBS-treated controls, α-CPI- and IgG-treated mice exhibited reduced pulmonary infiltration of several myeloid cell subpopulations and decreased expression of costimulatory molecules. In addition, a decreased number of CD4+ and CD8+ T cells but sustained numbers of Th1, Th2, and Th17 T cells were detected. An expressive reduction in several Treg subpopulations and their maturation and suppressive molecules, in addition to reduced numbers of Treg, TCD4+, and TCD8+ cells expressing costimulatory and coinhibitory molecules of immunity, were also detected. The novel cellular and humoral profiles established in the lungs of α-CTLA-4 and α-PD-1-treated mice but not in control IgG-treated mice were more efficient at controlling fungal growth and dissemination without causing increased tissue pathology due to excessive inflammation. This is the first study demonstrating the efficacy of CPI blockade in the treatment of pulmonary PCM, and further studies combining the use of immunotherapy with antifungal drugs are encouraged.


Subject(s)
Paracoccidioidomycosis , Mice , Animals , CTLA-4 Antigen , Programmed Cell Death 1 Receptor , Mice, Inbred C57BL , Patient Acuity , Immunoglobulin G
3.
Front Cell Infect Microbiol ; 13: 1268959, 2023.
Article in English | MEDLINE | ID: mdl-37868350

ABSTRACT

Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1ß, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.


Subject(s)
Paracoccidioides , Paracoccidioidomycosis , Animals , Mice , Paracoccidioides/genetics , Proteomics , Mice, Inbred C57BL , Iron/metabolism , Immunity , Granuloma
4.
Sci Rep ; 13(1): 12391, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524886

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America. Prior studies have demonstrated the significance of the enzyme Indoleamine 2,3-dioxygenase (IDO-1) in the immune regulation of PCM as well as the vital role of myeloid-derived suppressor cells (MDSCs) in moderating PCM severity. Additionally, Dectin-1 and Toll-Like Receptors (TLRs) signaling in cancer, infection, and autoimmune diseases have been shown to impact MDSC-IDO-1+ activity. To expand our understanding of MDSCs and the role of IDO-1 and pattern recognition receptors (PRRs) signaling in PCM, we generated MDSCs in vitro and administered an IDO-1 inhibitor before challenging the cells with Paracoccidioides brasiliensis yeasts. By co-culturing MDSCs with lymphocytes, we assessed T-cell proliferation to examine the influence of IDO-1 on MDSC activity. Moreover, we utilized specific antibodies and MDSCs from Dectin-1, TLR4, and TLR2 knockout mice to evaluate the effect of these PRRs on IDO-1 production by MDSCs. We confirmed the importance of these in vitro findings by assessing MDSC-IDO-1+ in the lungs of mice following the fungal infection. Taken together, our data show that IDO-1 expression by MDSCs is crucial for the control of T-cell proliferation, and the production of this enzyme is partially dependent on Dectin-1, TLR2, and TLR4 signaling during murine PCM.


Subject(s)
Myeloid-Derived Suppressor Cells , Paracoccidioidomycosis , Animals , Mice , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Mice, Knockout
5.
Front Immunol ; 14: 1039244, 2023.
Article in English | MEDLINE | ID: mdl-36776848

ABSTRACT

Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.


Subject(s)
Myeloid-Derived Suppressor Cells , Paracoccidioidomycosis , Mice , Animals , Th17 Cells/pathology , Mice, Inbred C57BL , Lung
6.
Front Cell Infect Microbiol ; 11: 700305, 2021.
Article in English | MEDLINE | ID: mdl-34408988

ABSTRACT

Candida albicans is the main fungal species associated with the development of oral candidiasis. Currently, therapeutic options for these infections are limited by the adverse effects of antifungal drugs and by the emergence of drug resistant strains. Thus, the development of new antifungal agents is needed for the prevention and treatment of oral Candida infections. Caffeic acid phenethyl ester (CAPE) is a natural compound from propolis polyphenolic groups that exhibits many pharmacological properties. In this study, we investigated whether CAPE can have antifungal and immunomodulatory effects on oral candidiasis. Preliminary tests to assess the antifungal activity of CAPE were performed using the Minimum Inhibitory Concentration (MIC) assay that demonstrated inhibition in a range from 16 to 32 µg/mL, confirming its antifungal activity on several C. albicans strains isolated from the oral cavity. Subsequently, we analyzed Candida spp biofilms formed in vitro, in which CAPE treatment at 5 x MIC caused a reduction of 68.5% in the total biomass and ~2.60 Log in the viable cell count (CFU/mL) in relation to the untreated biofilm (p<0.0001). Next, RNA was extracted from untreated and CAPE-treated biofilms and analyzed by real-time qPCR. A series of genes analyzed (ALS1, ECE1, EPA1, HWP1, YWP1, BCR1, BGR1, CPH1, EFG1, NDT80, ROB1, TEC1, UME6, SAP2, SAP5, PBL2, and LIP9) were downregulated by CAPE compared to the untreated control group (p<0.0001). In in vivo studies using Galleria mellonella, the treatment with CAPE prolonged survival of larvae infected by C. albicans by 44.5% (p < 0.05) and accompanied by a 2.07-fold increase in the number of hemocytes. Flow cytometry revealed the most prominent increases were in types P2 and P3 hemocytes, granular cells, which phagocytize pathogens. In addition, CAPE treatment decreased the fungal load in the hemolymph and stimulated the expression of antifungal peptide genes such as galiomicin and gallerimycin. The antifungal and immunomodulatory activities observed in G. mellonella were extended to a murine model of oral candidiasis, in which CAPE decreased the levels of C. albicans colonization (~2 log CFU/mL) in relation to the untreated control group. In addition, CAPE treatment significantly reduced pseudomembranous lesions, invasion of hyphae on epithelium surfaces, tissue damage and inflammatory infiltrate (p < 0.05). CAPE was also able to increase the expression of ß-defensin 3 compared to the infected and untreated group by 3.91-fold (p < 0.0001). Taken together, these results show that CAPE has both antifungal and immunomodulatory effects, making it a promising natural antifungal agent for the treatment and prevention of candidiasis and shows impact to oral candidiasis.


Subject(s)
Candidiasis, Oral , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Caffeic Acids , Candida albicans , Candidiasis, Oral/drug therapy , Disease Models, Animal , Mice , Phenylethyl Alcohol/analogs & derivatives
7.
Sci Rep ; 10(1): 11312, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647342

ABSTRACT

AhR is a ligand-activated transcription factor that plays an important role in the innate and adaptive immune responses. In infection models, it has been associated with host responses that promote or inhibit disease progression. In pulmonary paracoccidioidomycosis, a primary fungal infection endemic in Latin America, immune protection is mediated by Th1/Th17 cells and disease severity with predominant Th2/Th9/Treg responses. Because of its important role at epithelial barriers, we evaluate the role of AhR in the outcome of a pulmonary model of paracoccidioidomycosis. AhR-/- mice show increased fungal burdens, enhanced tissue pathology and mortality. During the infection, AhR-/- mice have more pulmonary myeloid cells with activated phenotype and reduced numbers expressing indoleamine 2,3 dioxygenase 1. AhR-deficient lungs have altered production of cytokines and reduced numbers of innate lymphoid cells (NK, ILC3 and NCR IL-22). The lungs of AhR-/- mice showed increased presence Th17 cells concomitant with reduced numbers of Th1, Th22 and Foxp3+ Treg cells. Furthermore, treatment of infected WT mice with an AhR-specific antagonist (CH223191) reproduced the main findings obtained in AhR-/- mice. Collectively our data demonstrate that in pulmonary paracoccidioidomycosis AhR controls fungal burden and excessive tissue inflammation and is a possible target for antifungal therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Paracoccidioidomycosis/immunology , Receptors, Aryl Hydrocarbon/physiology , Th17 Cells/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Th17 Cells/pathology
8.
mSphere ; 5(2)2020 04 08.
Article in English | MEDLINE | ID: mdl-32269156

ABSTRACT

Aspergillus nidulans is an opportunistic fungal pathogen in patients with immunodeficiency, and virulence of A. nidulans isolates has mainly been studied in the context of chronic granulomatous disease (CGD), with characterization of clinical isolates obtained from non-CGD patients remaining elusive. This study therefore carried out a detailed biological characterization of two A. nidulans clinical isolates (CIs), obtained from a patient with breast carcinoma and pneumonia and from a patient with cystic fibrosis that underwent lung transplantation, and compared them to the reference, nonclinical FGSC A4 strain. Both CIs presented increased growth in comparison to that of the reference strain in the presence of physiologically relevant carbon sources. Metabolomic analyses showed that the three strains are metabolically very different from each other in these carbon sources. Furthermore, the CIs were highly susceptible to cell wall-perturbing agents but not to other physiologically relevant stresses. Genome analyses identified several frameshift variants in genes encoding cell wall integrity (CWI) signaling components. Significant differences in CWI signaling were confirmed by Western blotting among the three strains. In vivo virulence studies using several different models revealed that strain MO80069 had significantly higher virulence in hosts with impaired neutrophil function than the other strains. In summary, this study presents detailed biological characterization of two A. nidulanssensu stricto clinical isolates. Just as in Aspergillus fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits. Further studies are required to fully characterize A. nidulans strain-specific virulence traits and pathogenicity.IMPORTANCE Immunocompromised patients are susceptible to infections with opportunistic filamentous fungi from the genus Aspergillus Although A. fumigatus is the main etiological agent of Aspergillus species-related infections, other species, such as A. nidulans, are prevalent in a condition-specific manner. A. nidulans is a predominant infective agent in patients suffering from chronic granulomatous disease (CGD). A. nidulans isolates have mainly been studied in the context of CGD although infection with A. nidulans also occurs in non-CGD patients. This study carried out a detailed biological characterization of two non-CGD A. nidulans clinical isolates and compared the results to those with a reference strain. Phenotypic, metabolomic, and genomic analyses highlight fundamental differences in carbon source utilization, stress responses, and maintenance of cell wall integrity among the strains. One clinical strain had increased virulence in models with impaired neutrophil function. Just as in A. fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits.


Subject(s)
Aspergillosis/microbiology , Aspergillus nidulans/genetics , Aspergillus nidulans/pathogenicity , Carbon/metabolism , Metabolomics , Adult , Animals , Cell Wall/genetics , Female , Genomics , Granulomatous Disease, Chronic/microbiology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutropenia , Phagocytosis , Virulence , Zebrafish/microbiology
9.
PLoS Genet ; 15(12): e1008551, 2019 12.
Article in English | MEDLINE | ID: mdl-31887136

ABSTRACT

Aspergillus fumigatus causes invasive aspergillosis, the most common life-threatening fungal disease of immuno-compromised humans. The treatment of disseminated infections with antifungal drugs, including echinocandin cell wall biosynthesis inhibitors, is increasingly challenging due to the rise of drug-resistant pathogens. The fungal calcium responsive calcineurin-CrzA pathway influences cell morphology, cell wall composition, virulence, and echinocandin resistance. A screen of 395 A. fumigatus transcription factor mutants identified nine transcription factors important to calcium stress tolerance, including CrzA and ZipD. Here, comparative transcriptomics revealed CrzA and ZipD regulated the expression of shared and unique gene networks, suggesting they participate in both converged and distinct stress response mechanisms. CrzA and ZipD additively promoted calcium stress tolerance. However, ZipD also regulated cell wall organization, osmotic stress tolerance and echinocandin resistance. The absence of ZipD in A. fumigatus caused a significant virulence reduction in immunodeficient and immunocompetent mice. The ΔzipD mutant displayed altered cell wall organization and composition, while being more susceptible to macrophage killing and eliciting an increased pro-inflammatory cytokine response. A higher number of neutrophils, macrophages and activated macrophages were found in ΔzipD infected mice lungs. Collectively, this shows that ZipD-mediated regulation of the fungal cell wall contributes to the evasion of pro-inflammatory responses and tolerance of echinocandin antifungals, and in turn promoting virulence and complicating treatment options.


Subject(s)
Aspergillus fumigatus/pathogenicity , Calcium/adverse effects , Drug Resistance, Fungal , Pulmonary Aspergillosis/microbiology , Transcription Factors/genetics , Animals , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Caspofungin , Cell Wall/metabolism , Disease Models, Animal , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Mice , Mutation , Pulmonary Aspergillosis/immunology , Stress, Physiological , Virulence
10.
Front Immunol ; 9: 464, 2018.
Article in English | MEDLINE | ID: mdl-29616019

ABSTRACT

Plasmacytoid dendritic cells (pDCs), which have been extensively studied in the context of the immune response to viruses, have recently been implicated in host defense mechanisms against fungal infections. Nevertheless, the involvement of human pDCs during paracoccidioidomycosis (PCM), a fungal infection endemic to Latin America, has been scarcely studied. However, pDCs were found in the cutaneous lesions of PCM patients, and in pulmonary model of murine PCM these cells were shown to control disease severity. These findings led us to investigate the role of human pDCs in the innate phase of PCM. Moreover, considering our previous data on the engagement of diverse Toll-like receptors and C-type lectin receptors receptors in Paracoccidioides brasiliensis recognition, we decided to characterize the innate immune receptors involved in the interaction between human pDCs and yeast cells. Purified pDCs were obtained from peripheral blood mononuclear cells from healthy donors and they were stimulated with P. brasiliensis with or without blocking antibodies to innate immune receptors. Here we demonstrated that P. brasiliensis stimulation activates human pDCs that inhibit fungal growth and secrete pro-inflammatory cytokines and type I IFNs. Surprisingly, P. brasiliensis-stimulated pDCs produce mature IL-1ß and activate caspase 1, possibly via inflammasome activation, which is a phenomenon not yet described during pDC engagement by microorganisms. Importantly, we also demonstrate that dectin-2 and dectin-3 are expressed on pDCs and appear to be involved (via Syk signaling) in the pDC-P. brasiliensis interaction. Moreover, P. brasiliensis-stimulated pDCs exhibited an efficient antigen presentation and were able to effectively activate CD4+ and CD8+ T cells. In conclusion, our study demonstrated for the first time that human pDCs are involved in P. brasiliensis recognition and may play an important role in the innate and adaptive immunity against this fungal pathogen.


Subject(s)
Dendritic Cells/immunology , Lectins, C-Type/immunology , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Plasma Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Caspase 1/immunology , Dendritic Cells/pathology , Female , Humans , Interferon-gamma/immunology , Interleukin-1beta/immunology , Lymphocyte Activation , Male , Paracoccidioidomycosis/pathology , Plasma Cells/pathology
11.
Eur J Hum Genet ; 25(12): 1388-1396, 2017 12.
Article in English | MEDLINE | ID: mdl-29255177

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder, caused by mutations in the dystrophin gene, affecting 1:3500-5000 boys worldwide. The lack of dystrophin induces degeneration of muscle cells and elicits an immune response characterized by an intensive secretion of pro-inflammatory cytokines. Immunoglobulins modulate the inflammatory response through several mechanisms and have been widely used as an adjuvant therapy for autoimmune diseases. Here we evaluated the effect of immunoglobulin G (IG) injected intraperitoneally in a severely affected double knockout (dko) mouse model for Duchenne muscular dystrophy. The IG dko treated mice were compared regarding activity rates, survival and histopathology with a control untreated group. Additionally, dendritic cells and naïve lymphocytes from these two groups and WT mice were obtained to study in vitro the role of the immune system associated to DMD pathophysiology. We show that IG therapy significantly enhances activity rate and lifespan of dko mice. It diminishes muscle tissue inflammation by decreasing the expression of costimulatory molecules MHC, CD86 and CD40 and reducing Th1-related cytokines IFN-γ, IL-1ß and TNF-α release. IG therapy dampens the effector immune responses supporting the hypothesis according to which the immune response accelerates DMD progression. As IG therapy is already approved by FDA for treating autoimmune disorders, with less side-effects than currently used glucocorticoids, our results may open a new therapeutic option aiming to improve life quality and lifespan of DMD patients.


Subject(s)
Immunoglobulin G/therapeutic use , Immunotherapy/methods , Muscular Dystrophy, Duchenne/therapy , Animals , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/immunology , Dystrophin/genetics , Humans , Immunoglobulin G/administration & dosage , Injections, Intraperitoneal , Longevity , Lymphocytes/immunology , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Phenotype , Utrophin/genetics
12.
Front Immunol ; 8: 1522, 2017.
Article in English | MEDLINE | ID: mdl-29181001

ABSTRACT

Resistance to primary fungal pathogens is usually attributed to the proinflammatory mechanisms of immunity conferred by interferon-γ activation of phagocytes that control microbial growth, whereas susceptibility is attributed to anti-inflammatory responses that deactivate immunity. This study challenges this paradigm by demonstrating that resistance to a primary fungal pathogen such as Paracoccidiodes brasiliensis can be mediated by disease tolerance, a mechanism that preserves host fitness instead of pathogen clearance. Among the mechanisms of disease tolerance described, a crucial role has been ascribed to the enzyme indoleamine-2,3 dioxygenase (IDO) that concomitantly controls pathogen growth by limiting tryptophan availability and reduces tissue damage by decreasing the inflammatory process. Here, we demonstrated in a pulmonary model of paracoccidioidomycosis that IDO exerts a dual function depending on the resistant pattern of hosts. IDO activity is predominantly enzymatic and induced by IFN-γ signaling in the pulmonary dendritic cells (DCs) from infected susceptible (B10.A) mice, whereas phosphorylated IDO (pIDO) triggered by TGF-ß activation of DCs functions as a signaling molecule in resistant mice. IFN-γ signaling activates the canonical pathway of NF-κB that promotes a proinflammatory phenotype in B10.A DCs that control fungal growth but ultimately suppress T cell responses. In contrast, in A/J DCs IDO promotes a tolerogenic phenotype that conditions a sustained synthesis of TGF-ß and expansion of regulatory T cells that avoid excessive inflammation and tissue damage contributing to host fitness. Therefore, susceptibility is unexpectedly mediated by mechanisms of proinflammatory immunity that are usually associated with resistance, whereas genetic resistance is based on mechanisms of disease tolerance mediated by pIDO, a phenomenon never described in the protective immunity against primary fungal pathogens.

13.
Front Immunol ; 8: 880, 2017.
Article in English | MEDLINE | ID: mdl-28791025

ABSTRACT

In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-ß signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1-/-) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1-/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1-/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1ß, TGF-ß, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-ß, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1-/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.

14.
Front Immunol ; 8: 786, 2017.
Article in English | MEDLINE | ID: mdl-28740491

ABSTRACT

The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1ß and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3-/-, Casp1/11-/-, Asc-/-) as well as deficient for ATP receptor (P2x7r-/-) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3-/-, Casp1/11-/-, Asc-/-, and P2x7r-/- mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1ß and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-ß appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.

15.
PLoS Pathog ; 12(12): e1006115, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27992577

ABSTRACT

Plasmacytoid dendritic cells (pDCs), considered critical for immunity against viruses, were recently associated with defense mechanisms against fungal infections. However, the immunomodulatory function of pDCs in pulmonary paracoccidiodomycosis (PCM), an endemic fungal infection of Latin America, has been poorly defined. Here, we investigated the role of pDCs in the pathogenesis of PCM caused by the infection of 129Sv mice with 1 x 106 P. brasiliensis-yeasts. In vitro experiments showed that P. brasiliensis infection induces the maturation of pDCs and elevated synthesis of TNF-α and IFN-ß. The in vivo infection caused a significant influx of pDCs to the lungs and increased levels of pulmonary type I IFN. Depletion of pDCs by a specific monoclonal antibody resulted in a less severe infection, reduced tissue pathology and increased survival time of infected mice. An increased influx of macrophages and neutrophils and elevated presence of CD4+ and CD8+ T lymphocytes expressing IFN-γ and IL-17 in the lungs of pDC-depleted mice were also observed. These findings were concomitant with decreased frequency of Treg cells and reduced levels of immunoregulatory cytokines such as IL-10, TGF-ß, IL-27 and IL-35. Importantly, P. brasilienis infection increased the numbers of pulmonary pDCs expressing indoleamine 2,3-dioxygenase-1 (IDO), an enzyme with immunoregulatory properties, that were reduced following pDC depletion. In agreement, an increased immunogenic activity of infected pDCs was observed when IDO-deficient or IDO-inhibited pDCs were employed in co-cultures with lymphocytes Altogether, our results suggest that in pulmonary PCM pDCs exert a tolerogenic function by an IDO-mediated mechanism that increases Treg activity.


Subject(s)
Dendritic Cells/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Paracoccidioidomycosis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Flow Cytometry , Lung Diseases, Fungal/immunology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Paracoccidioides/immunology , Real-Time Polymerase Chain Reaction
16.
Mycopathologia ; 165(4-5): 223-36, 2008.
Article in English | MEDLINE | ID: mdl-18777631

ABSTRACT

Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.


Subject(s)
Immunity, Innate , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Animals , Disease Models, Animal , Genetic Predisposition to Disease , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Mice , Mice, Inbred C57BL , Paracoccidioides/physiology , Paracoccidioidomycosis/genetics , Paracoccidioidomycosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...