Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1122031, 2023.
Article in English | MEDLINE | ID: mdl-36992834

ABSTRACT

Breast cancer is the most diagnosed type of cancer amongst women in economically developing countries and globally. Most breast cancers express estrogen receptor alpha (ERα) and are categorized as positive (ER+) breast cancer. Endocrine therapies such as, selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and selective estrogen receptor downregulators (SERDs) are used to treat ER+ breast cancer. However, despite their effectiveness, severe side-effects and resistance are associated with these endocrine therapies. Thus, it would be highly beneficial to develop breast cancer drugs that are as effective as current therapies, but less toxic with fewer side effects, and less likely to induce resistance. Extracts of Cyclopia species, an indigenous South African fynbos plant, have been shown to possess phenolic compounds that exhibit phytoestrogenic and chemopreventive activities against breast cancer development and progression. In the current study, three well characterized Cyclopia extracts, SM6Met, cup of tea (CoT) and P104, were examined for their abilities to modulate the levels of the estrogen receptor subtypes, estrogen receptor alpha and estrogen receptor beta (ERß), which have been recognized as crucial to breast cancer prognosis and treatment. We showed that the Cyclopia subternata Vogel (C. subternata Vogel) extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, reduced estrogen receptor alpha protein levels while elevating estrogen receptor beta protein levels, thereby reducing the ERα:ERß ratio in a similar manner as standard of care breast cancer endocrine therapies such as fulvestrant (selective estrogen receptor downregulator) and 4-hydroxytamoxifen (elective estrogen receptor modulator). Estrogen receptor alpha expression enhances the proliferation of breast cancer cells while estrogen receptor beta inhibits the proliferative activities of estrogen receptor alpha. We also showed that in terms of the molecular mechanisms involved all the Cyclopia extracts regulated estrogen receptor alpha and estrogen receptor beta protein levels through both transcriptional and translational, and proteasomal degradation mechanisms. Therefore, from our findings, we proffer that the C. subternata Vogel extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, selectively modulate estrogen receptor subtypes levels in a manner that generally supports inhibition of breast cancer proliferation, thereby demonstrating attributes that could be explored as potential therapeutic agents for breast cancer.

2.
Front Pharmacol ; 13: 1017690, 2022.
Article in English | MEDLINE | ID: mdl-36210845

ABSTRACT

Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.

3.
Cells ; 11(14)2022 07 11.
Article in English | MEDLINE | ID: mdl-35883605

ABSTRACT

Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress (i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with both implicated in the development of insulin resistance, the main risk factor for the development of T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than only a correlative link between the physiological elements of risk (stress and inflammation) and the development of insulin resistance.


Subject(s)
Acute-Phase Proteins , Diabetes Mellitus, Type 2 , Insulin Resistance , Acute-Phase Proteins/metabolism , C-Reactive Protein/analysis , Diabetes Mellitus, Type 2/metabolism , Humans , Inflammation/metabolism , Plasminogen Activator Inhibitor 1 , Serum Amyloid A Protein , Stress, Physiological
4.
Biochem Biophys Res Commun ; 602: 113-119, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35263658

ABSTRACT

Central to the pharmacological use of glucocorticoids (GCs) is the availability of the glucocorticoid receptor alpha (GRα). However, chronic GC therapy often results in the ligand-mediated downregulation of the GRα, and the subsequent development of an acquired GC resistance. While studies have demonstrated the dimerization-dependent downregulation of GRα, as well as the molecular mechanisms through which ligand-mediated downregulation occurs, little is known regarding the relative contribution of these molecular mechanisms to the cumulative ligand-mediated downregulation of the receptor, especially within an endogenous system. Thus, to probe this, the current study evaluates the conformational-dependent regulation of GRα protein using mouse embryonic fibroblast (MEF) cells containing either wild type GRα (MEFwt) or the dimerization deficient GRα mutant (MEFdim) and inhibitors of transcription, translation, and proteasomal degradation. Results show that the promotion of GRα dimerization increases the downregulation of the receptor via two main mechanisms, proteasomal degradation of the receptor protein, and downregulation of GRwt mRNA transcripts. In contrast, when receptor dimerization is restricted these two mechanisms play a lesser role and results suggest that stabilization of GRα protein by non-coding RNAs may potentially be the major regulatory mechanism. Together, these findings clarify the relative contribution of the molecular mechanisms involved in ligand-mediated downregulation of GRα and provides pharmacological targets for the development of GRα ligands with a more favourable therapeutic index.


Subject(s)
Fibroblasts , Receptors, Glucocorticoid , Animals , Down-Regulation , Fibroblasts/metabolism , Glucocorticoids/pharmacology , Ligands , Mice , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
5.
J Biol Chem ; 298(2): 101574, 2022 02.
Article in English | MEDLINE | ID: mdl-35007536

ABSTRACT

The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.


Subject(s)
Dexamethasone , Point Mutation , Receptors, Glucocorticoid , Animals , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Ligands , Mice , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
6.
Cells ; 10(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34685511

ABSTRACT

For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.


Subject(s)
Glucocorticoids/metabolism , Metabolism, Inborn Errors/genetics , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/metabolism , Down-Regulation/drug effects , Glucocorticoids/pharmacology , Humans , RNA, Messenger/genetics , Receptors, Glucocorticoid/genetics
7.
Front Immunol ; 10: 1693, 2019.
Article in English | MEDLINE | ID: mdl-31379877

ABSTRACT

Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.


Subject(s)
Receptors, Glucocorticoid/metabolism , Animals , Dimerization , Down-Regulation/physiology , Half-Life , Humans , Protein Stability , Signal Transduction/physiology
8.
Endocr Connect ; 7(12): R328-R349, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30352419

ABSTRACT

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.

9.
Sci Rep ; 8(1): 14266, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250038

ABSTRACT

Glucocorticoids (GCs), acting via the glucocorticoid receptor (GRα), remain the mainstay therapeutic choice for the treatment of inflammation. However, chronic GC use, aside from generating undesirable side-effects, results in GRα down-regulation, often coupled to a decrease in GC-responsiveness, which may culminate in acquired GC resistance. The current study presents evidence for a novel role of the dimerization state of the GRα in mediating GC-mediated GRα turnover. Through comparing the effects of dimerization promoting GCs on down-regulation of a transfected human wild type GRα (hGRwt) or a dimerization deficient GRα mutant (hGRdim), we established that a loss of receptor dimerization restricts GRα turnover, which was supported by the use of the dimerization abrogating Compound A (CpdA), in cells containing endogenous GRα. Moreover, we showed that the dimerization state of the GRα influenced the post-translational processing of the receptor, specifically hyper-phosphorylation at Ser404, which influenced the interaction of GRα with the E3 ligase, FBXW7α, thus hampering receptor turnover via the proteasome. Lastly, the restorative effects of CpdA on the GRα pool, in the presence of Dex, were demonstrated in a combinatorial treatment protocol. These results expand our understanding of factors that contribute to GC-resistance and may be exploited clinically.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/genetics , Inflammation/drug therapy , Protein Processing, Post-Translational/genetics , Receptors, Glucocorticoid/chemistry , Animals , Benzimidazoles/pharmacology , COS Cells , Chlorocebus aethiops , Dexamethasone/pharmacology , Dimerization , Drug Resistance/genetics , F-Box-WD Repeat-Containing Protein 7/chemistry , Glucocorticoids/chemistry , Glucocorticoids/genetics , Hep G2 Cells , Humans , Inflammation/genetics , Inflammation/pathology , Phosphorylation/drug effects , Receptors, Glucocorticoid/genetics , Transfection
10.
Front Pharmacol ; 9: 650, 2018.
Article in English | MEDLINE | ID: mdl-29973879

ABSTRACT

Breast cancer (BC) is the leading cause of cancer-related deaths in women. Chemoprevention of BC by using plant extracts is gaining attention. SM6Met, a well-characterized extract of Cyclopia subternata with reported selective estrogen receptor subtype activity, has shown tumor suppressive effects in a chemically induced BC model in rats, which is known to be estrogen responsive. However, there is no information on the estrogen sensitivity of the relatively new orthotopic model of LA7 cell-induced mammary tumors. In the present study, the potential chemopreventative and side-effect profile of SM6Met on LA7 cell-induced tumor growth was evaluated, as was the effects of 17ß-estradiol and standard-of-care (SOC) endocrine therapies, such as tamoxifen (TAM), letrozole (LET), and fulvestrant (FUL). Tumor growth was observed in the tumor-vehicle control group until day 10 post tumor induction, which declined afterward on days 12-14. SM6Met suppressed tumor growth to the same extent as TAM, while LET, but not FUL, also showed substantial anti-tumor effects. Short-term 17ß-estradiol treatment reduced tumor volume on days prior to day 10, whereas tumor promoting effects were observed during long-term treatment, which was especially evident at later time points. Marked elevation in serum markers of liver injury, which was further supported by histological evaluation, was observed in the vehicle-treated tumor control, TAM, LET, and long-term 17ß-estradiol treatment groups. Alterations in the lipid profiles were also observed in the 17ß-estradiol treatment groups. In contrast, SM6Met did not augment the increase in serum levels of liver injury biomarkers caused by tumor induction and no effect was observed on lipid profiles. In summary, the results from the current study demonstrate the chemopreventative effect of SM6Met on mammary tumor growth, which was comparable to that of TAM, without eliciting the negative side-effects observed with this SOC endocrine therapy. Furthermore, the results of this study also showed some responsiveness of LA7-induced tumors to estrogen and SOC endocrine therapies. Thus, this model may be useful in evaluating potential endocrine therapies for hormone responsive BC.

11.
J Steroid Biochem Mol Biol ; 163: 129-35, 2016 10.
Article in English | MEDLINE | ID: mdl-27142456

ABSTRACT

SM6Met, a phytoestrogenic extract of Cyclopia subternata indigenous to the Western Cape province of South Africa, displays estrogenic attributes with potential for breast cancer chemoprevention. In this study, we report that SM6Met, in the presence of estradiol, induces a significant cell cycle G0/G1 phase arrest similar to the selective estrogen receptor modulator, tamoxifen. Furthermore, as a proof of concept, in the N-Methyl-N-nitrosourea induced rat mammary gland carcinogenesis model, SM6Met increases tumor latency by 7days and median tumor free survival by 42 days, while decreasing palpable tumor frequency by 32%, tumor mass by 40%, and tumor volume by 53%. Therefore, the current study provides proof of concept that SM6Met has definite potential as a chemopreventative agent against the development and progression of breast cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cyclopia Plant/chemistry , Mammary Glands, Animal/drug effects , Mammary Neoplasms, Experimental/drug therapy , Phytoestrogens/pharmacology , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Estrogen Antagonists/pharmacology , Female , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/genetics , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/mortality , Mammary Neoplasms, Experimental/pathology , Methylnitrosourea , Phytoestrogens/isolation & purification , Rats , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Survival Analysis , Tamoxifen/pharmacology , Tumor Burden/drug effects
12.
PLoS One ; 9(10): e110702, 2014.
Article in English | MEDLINE | ID: mdl-25335188

ABSTRACT

Corticosteroid-binding globulin (CBG), a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs). It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR), which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE) are present in the Cbg promoter, putative binding sites for C/EBPß, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPß, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPß protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPß's involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP) after DEX treatment indicated increased co-recruitment of C/EBPß and GR to the Cbg promoter, while C/EBPß knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPß.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/genetics , Glucocorticoids/metabolism , Receptors, Glucocorticoid/metabolism , Transcortin/biosynthesis , Animals , Binding Sites , Biological Availability , DNA-Binding Proteins/metabolism , Dexamethasone/administration & dosage , Gene Expression Regulation/drug effects , Glucocorticoids/administration & dosage , Humans , Mice , Promoter Regions, Genetic , Rats , Transcortin/antagonists & inhibitors
13.
PLoS One ; 8(11): e79223, 2013.
Article in English | MEDLINE | ID: mdl-24223909

ABSTRACT

Hormone replacement therapy associated risks, and the concomitant reluctance of usage, has instigated the search for new generations of estrogen analogues that would maintain estrogen benefits without associated risks. Furthermore, if these analogues display chemo-preventative properties in breast and endometrial tissues it would be of great value. Both the selective estrogen receptor modulators as well as the selective estrogen receptor subtype modulators have been proposed as estrogen analogues with improved risk profiles. Phytoestrogen containing extracts of Cyclopia, an indigenous South African fynbos plant used to prepare Honeybush tea may serve as a source of new estrogen analogues. In this study three extracts, P104, SM6Met, and cup-of-tea, from two species of Cyclopia, C. genistoides and C. subternata, were evaluated for ER subtype specific agonism and antagonism both in transactivation and transrepression. For transactivation, the Cyclopia extracts displayed ERα antagonism and ERß agonism when ER subtypes were expressed separately, however, when co-expressed only agonism was uniformly observed. In contrast, for transrepression, this uniform behavior was lost, with some extracts (P104) displaying uniform agonism, while others (SM6Met) displayed antagonism when subtypes were expressed separately and agonism when co-expressed. In addition, breast cancer cell proliferation assays indicate that extracts antagonize cell proliferation in the presence of estrogen at lower concentrations than that required for proliferation. Furthermore, lack of uterine growth and delayed vaginal opening in an immature rat uterotrophic model validates the ERα antagonism of extracts observed in vitro and supports the potential of the Cyclopia extracts as a source of estrogen analogues with a reduced risk profile.


Subject(s)
Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor beta/agonists , Fabaceae/chemistry , Plant Extracts/pharmacology , Animals , Blotting, Western , COS Cells , Cell Proliferation/drug effects , Chlorocebus aethiops , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Fabaceae/classification , Female , Fulvestrant , Genistein/pharmacology , Humans , Luciferases/genetics , Luciferases/metabolism , MCF-7 Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Phytoestrogens/pharmacology , Promoter Regions, Genetic/genetics , Rats , Rats, Wistar , Species Specificity , Uterus/drug effects , Uterus/growth & development , Vagina/drug effects , Vagina/physiology
14.
PLoS One ; 8(5): e64831, 2013.
Article in English | MEDLINE | ID: mdl-23717665

ABSTRACT

Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs.


Subject(s)
Models, Biological , Receptors, Glucocorticoid/metabolism , Transcriptional Activation , Animals , Base Sequence , COS Cells , Chlorocebus aethiops , DNA Primers , Dimerization , Fluorescence Resonance Energy Transfer , Genes, Reporter , Ligands , Promoter Regions, Genetic , Protein Binding , Real-Time Polymerase Chain Reaction
15.
Planta Med ; 79(7): 580-90, 2013 May.
Article in English | MEDLINE | ID: mdl-23609108

ABSTRACT

Cyclopia Vent. species, commonly known as honeybush, are endemic to Southern Africa. The plant is traditionally used as an herbal tea but several health benefits have recently been recorded. This minireview presents an overview of polyphenols found in Cyclopia and focuses on the phytoestrogenic potential of selected polyphenols and of extracts prepared from the plant.


Subject(s)
Cyclopia Plant/chemistry , Phytoestrogens/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Polyphenols/therapeutic use , Female , Humans , Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , South Africa
16.
Steroids ; 78(2): 182-94, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23178279

ABSTRACT

Glucocorticoid receptor (GR) concentrations and the ability of the GR to dimerize are factors which influence sensitivity to glucocorticoids. Upon glucocorticoid binding, the GR is actively transported into the nucleus, a crucial step in determining GR function. We examined the effects of GR concentration and the ability to dimerize on GR nuclear import, export and nuclear distribution using both live cell microscopy of GFP-tagged GR and immunofluorescence of untagged GR, with both wild type GR (GRwt) and dimerization deficient GR (GRdim). We found that the observed rate of GR nuclear import increases significantly at higher GR concentrations, at saturating concentrations of dexamethasone (10(-6) M) using GFP-tagged GR, while with untagged GR it is only discernable at sub-saturating ligand concentrations (10(-10)-10(-9) M). Loss of dimerization results in a slower observed rate of nuclear import (2.5- to 3.3-fold decrease for GFP-GRdim) as well as a decreased extent of GR nuclear localization (18-27% decrease for untagged GRdim). These results were linked to an increased rate of GR export at low GR concentrations (1.4- to 1.6-fold increase for untagged GR) and where GR dimerization is abrogated (1.5- to 1.7-fold increase for GFP-GRdim). Furthermore, GR dimerization was shown to be required for the appearance of discrete GC-dependent GR nuclear foci, the loss of which may explain the increased rate of GR export for the GRdim. The reduction in the observed rate of nuclear import and increased rate of nuclear export displayed at low GR concentrations and by the GRdim could explain the lowered glucocorticoid response under these conditions.


Subject(s)
Cell Nucleus/metabolism , Protein Multimerization , Receptors, Glucocorticoid/metabolism , Acetates/pharmacology , Active Transport, Cell Nucleus/drug effects , Animals , COS Cells , Cell Nucleus/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dexamethasone/pharmacology , Fluorescent Antibody Technique , Green Fluorescent Proteins/metabolism , Humans , Models, Biological , Protein Binding/drug effects , Protein Multimerization/drug effects , Tyramine/analogs & derivatives , Tyramine/pharmacology
17.
Steroids ; 76(10-11): 1176-84, 2011.
Article in English | MEDLINE | ID: mdl-21641918

ABSTRACT

The glucocorticoid receptor (GR) is a ligand-activated transcription factor for which a number of endogenous and synthetic ligands exist. A key question in steroid receptor biology is how different ligands elicit different maximal transcriptional responses via the same receptor and on the same promoter. This question was addressed quantitatively for the GR, using a panel of agonists, partial agonists and antagonists, on the endogenous GILZ gene in two different human cell lines. It was found that the extent of GR nuclear localization correlated with the efficacy for GILZ transactivation by the GR in U2OS cells. However, in A549 cells there was no significant correlation, with all ligands resulting in similar levels of GR nuclear localization, despite different levels of transcriptional activation of the GILZ gene. Chromatin immunoprecipitation analysis on the other hand, revealed ligand-specific differences in GILZ promoter occupancy in the A549 cells, which correlated with the transcriptional efficacy of the subset of ligands investigated. This suggests that ligand-specific differences in promoter occupancy by activated GR play a major role in discrimination between agonist, partial agonist and antagonist responses on the endogenous GILZ gene in A549 cells, while differences in nuclear localisation of liganded GR play a role in determining the transcriptional outcome in U2OS cells. These cell line-specific differences were not dependent on the amount of GR present, since transient overexpression of GR in U2OS did not alter the relative ligand-selective nuclear localisation. Our results show that there is a relationship between ligand-specific transactivation efficacy, extent of nuclear translocation and recruitment of GR to the promoter. However, the relative contribution of nuclear translocation and GR promoter recruitment to ligand-specific transactivation efficacy is cell-specific.


Subject(s)
Cell Nucleus/metabolism , Promoter Regions, Genetic/genetics , Receptors, Glucocorticoid/metabolism , Blotting, Western , Cell Line , Cell Line, Tumor , Chromatin Immunoprecipitation , Humans , Ligands , Polymerase Chain Reaction , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Transcriptional Activation/genetics
18.
Endocrinology ; 151(11): 5279-93, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20881254

ABSTRACT

The liver plays an important role in inflammation and stress by producing the acute phase proteins (APPs) required for resolution of inflammation as well as by delivering systemic glucose, through gluconeogenesis, required to fuel the stress response. Disruption of the interplay between interleukin 6 (IL-6) and glucocorticoids (GCs), the peripheral mediators of inflammation and stress, respectively, may lead to side-effects associated with the pharmacological use of GCs. The current study investigated the interplay between IL-6 and GCs in a hepatoma cell line (BWTG3) at protein (protein activity assays, Western blotting, and ELISA) and mRNA (qPCR) levels. Specifically, the action of dexamethasone (Dex), a known antiinflammatory drug and glucocorticoid receptor (GR) agonist, is compared to that of Compound A (CpdA), a selective glucocorticoid receptor agonist (SEGRA). CpdA, like IL-6, but unlike Dex, increases GR binding and decreases the metabolic enzymes, tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and gamma glutamyltransferase, at protein or mRNA level. Like Dex, both CpdA and IL-6 increase the positive APPs, serum amyloid A and C-reactive protein, and decrease the negative APP, corticosteroid binding globulin. The study shows that the GC, Dex, and IL-6 generally have divergent effects on the GR and metabolic enzymes, while their functions are convergent on the APPs. In contrast to Dex, CpdA has effects convergent to that of IL-6 on the GR, metabolic enzymes, and APPs. Thus these findings suggest that CpdA, like Dex, modulates APPs, leading to effective control of inflammation, while, in contrast to Dex, it is less likely to lead to GC-induced side-effects.


Subject(s)
Inflammation/metabolism , Interleukin-6/metabolism , Liver/metabolism , Receptors, Glucocorticoid/metabolism , Stress, Physiological/physiology , Analysis of Variance , Animals , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Dexamethasone/pharmacology , Enzyme-Linked Immunosorbent Assay , Glucocorticoids/pharmacology , Interleukin-6/pharmacology , Liver/drug effects , Mice , Receptors, Glucocorticoid/agonists , Reverse Transcriptase Polymerase Chain Reaction
19.
Mol Cell Endocrinol ; 327(1-2): 72-88, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20561560

ABSTRACT

A central question in glucocorticoid mechanism of action via the glucocorticoid receptor (GR) is what determines ligand-selective transcriptional responses. Using a panel of 12 GR ligands, we show that the extent of GR phosphorylation at S226 and S211, GR half-life and transcriptional response, occur in a ligand-selective manner. While GR phosphorylation at S226 was shown to inhibit maximal transcription efficacy, phosphorylation at S211 is required for maximal transactivation, but not for transrepression efficacy. Both ligand-selective GR phosphorylation and half-life correlated with efficacy for transactivation and transrepression. For both expressed and endogenous GR, in two different cell lines, agonists resulted in the greatest extent of phosphorylation and the greatest extent of GR downregulation, suggesting a link between these functions. However, using phosphorylation-deficient GR mutants we established that phosphorylation of the GR at S226 or S211 does not determine the rank order of ligand-selective GR transactivation. These results are consistent with a model whereby ligand-selective GR phosphorylation and half-life are a consequence of upstream events, such as ligand-specific GR conformations, which are maintained in the phosphorylation mutants.


Subject(s)
Receptors, Glucocorticoid/metabolism , Transcription, Genetic , Transcriptional Activation/genetics , Animals , Cell Line , Half-Life , Humans , Ligands , Mice , NF-kappa B/genetics , Phosphorylation , Phosphoserine/metabolism , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational , Rats , Receptors, Glucocorticoid/agonists , Transcription Factor AP-1/genetics
20.
J Biol Chem ; 285(11): 8061-75, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20037160

ABSTRACT

Compound A (CpdA), a dissociated glucocorticoid receptor modulator, decreases corticosteroid-binding globulin (CBG), adrenocorticotropic hormone (ACTH), and luteneinizing hormone levels in rats. Whether this is due to transcriptional regulation by CpdA is not known. Using promoter reporter assays we show that CpdA, like dexamethasone (Dex), directly transrepresses these genes. Results using a rat Cbg proximal-promoter reporter construct in BWTG3 and HepG2 cell lines support a glucocorticoid receptor (GR)-dependent transrepression mechanism for CpdA. However, CpdA, unlike Dex, does not result in transactivation via glucocorticoid-responsive elements within a promoter reporter construct even when GR is co-transfected. The inability of CpdA to result in transactivation via glucocorticoid-responsive elements is confirmed on the endogenous tyrosine aminotransferase gene, whereas transrepression ability is confirmed on the endogenous CBG gene. Consistent with a role for CpdA in modulating GR activity, whole cell binding assays revealed that CpdA binds reversibly to the GR, but with lower affinity than Dex, and influences association of [(3)H]Dex, but has no effect on dissociation. In addition, like Dex, CpdA causes nuclear translocation of the GR, albeit to a lesser degree. Several lines of evidence, including fluorescence resonance energy transfer, co-immunoprecipitation, and nuclear immunofluorescence studies of nuclear localization-deficient GR show that CpdA, unlike Dex, does not elicit ligand-induced GR dimerization. Comparison of the behavior of CpdA in the presence of wild type GR to that of Dex with a dimerization-deficient GR mutant (GR(dim)) strongly supports the conclusion that loss of dimerization is responsible for the dissociated behavior of CpdA.


Subject(s)
Adenine/pharmacology , Citrates/pharmacology , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Glucose/pharmacology , Phosphates/pharmacology , Receptors, Glucocorticoid , Transcriptional Activation/drug effects , Adenine/metabolism , Animals , COS Cells , Carcinoma, Hepatocellular , Cell Line, Tumor , Chlorocebus aethiops , Citrates/metabolism , Dexamethasone/metabolism , Dimerization , Gene Expression/drug effects , Genes, Reporter/genetics , Glucocorticoids/metabolism , Glucose/metabolism , Humans , Liver Neoplasms , Mice , Mutagenesis , Neurons/cytology , Phosphates/metabolism , Promoter Regions, Genetic/genetics , Rats , Rats, Wistar , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship , Transcortin/genetics , Transcriptional Activation/physiology , Tritium , Tyrosine Transaminase/genetics , Tyrosine Transaminase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...