Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 102(3): 838-43, 2005 Jan 18.
Article in English | MEDLINE | ID: mdl-15637156

ABSTRACT

Heartwater, a tick-borne disease of domestic and wild ruminants, is caused by the intracellular rickettsia Ehrlichia ruminantium (previously known as Cowdria ruminantium). It is a major constraint to livestock production throughout subSaharan Africa, and it threatens to invade the Americas, yet there is no immediate prospect of an effective vaccine. A shotgun genome sequencing project was undertaken in the expectation that access to the complete protein coding repertoire of the organism will facilitate the search for vaccine candidate genes. We report here the complete 1,516,355-bp sequence of the type strain, the stock derived from the South African Welgevonden isolate. Only 62% of the genome is predicted to be coding sequence, encoding 888 proteins and 41 stable RNA species. The most striking feature is the large number of tandemly repeated and duplicated sequences, some of continuously variable copy number, which contributes to the low proportion of coding sequence. These repeats have mediated numerous translocation and inversion events that have resulted in the duplication and truncation of some genes and have also given rise to new genes. There are 32 predicted pseudogenes, most of which are truncated fragments of genes associated with repeats. Rather then being the result of the reductive evolution seen in other intracellular bacteria, these pseudogenes appear to be the product of ongoing sequence duplication events.


Subject(s)
Ehrlichia ruminantium/genetics , Gene Dosage , Genome, Bacterial , Tandem Repeat Sequences , Base Sequence , Evolution, Molecular , Heartwater Disease/microbiology , Molecular Sequence Data , Pseudogenes , Sequence Analysis
2.
Ann N Y Acad Sci ; 969: 147-50, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12381580

ABSTRACT

A 1.2 kb polymorphic fragment from the Gardel isolate of Ehrlichia (formerly Cowdria) ruminantium was used to isolate a 15kb clone from the E. ruminantium Welgevonden LambdaGEM-11 library. This clone, WL2EL1, was subcloned and sequenced. Eight open reading frames (ORFs) were identified. The ORF in WL2EL1 which contained the Welgevonden homologue of the 1.2 kb polymorphic fragment was designated Cowdria polymorphic gene 1 (cpg1). The cpg1 ORF was cloned into pCMViUB, a genetic vaccine vector. Mice and sheep were immunized with pCMViUB/cpg1 by intramuscular injection and gene gun inoculation. Although all of the immunized mice died, there was a trend for mice that received larger amounts of pCMViUB/cpg1 DNA to survive longer. Four out of five sheep immunized with the construct survived lethal challenge.


Subject(s)
Bacterial Vaccines , Ehrlichia ruminantium/genetics , Ehrlichia ruminantium/immunology , Heartwater Disease/prevention & control , Open Reading Frames/immunology , Sheep Diseases/prevention & control , Animals , Cloning, Molecular , Dose-Response Relationship, Immunologic , Genes, Bacterial , Genetic Vectors , Heartwater Disease/immunology , Mice , Mice, Inbred C57BL , Open Reading Frames/genetics , Polymorphism, Genetic , Sequence Homology , Sheep , Sheep Diseases/immunology , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...