Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 878: 163015, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36965737

ABSTRACT

Thousands of oil and gas structures have been installed in the world's oceans over the past 70 years to meet the population's reliance on hydrocarbons. Over the last decade, there has been increased concern over how to handle decommissioning of this infrastructure when it reaches the end of its operational life. Complete or partial removal may or may not present the best option when considering potential impacts on the environment, society, technical feasibility, economy, and future asset liability. Re-purposing of offshore structures may also be a valid legal option under international maritime law where robust evidence exists to support this option. Given the complex nature of decommissioning offshore infrastructure, a global horizon scan was undertaken, eliciting input from an interdisciplinary cohort of 35 global experts to develop the top ten priority research needs to further inform decommissioning decisions and advance our understanding of their potential impacts. The highest research priorities included: (1) an assessment of impacts of contaminants and their acceptable environmental limits to reduce potential for ecological harm; (2) defining risk and acceptability thresholds in policy/governance; (3) characterising liability issues of ongoing costs and responsibility; and (4) quantification of impacts to ecosystem services. The remaining top ten priorities included: (5) quantifying ecological connectivity; (6) assessing marine life productivity; (7) determining feasibility of infrastructure re-use; (8) identification of stakeholder views and values; (9) quantification of greenhouse gas emissions; and (10) developing a transdisciplinary decommissioning decision-making process. Addressing these priorities will help inform policy development and governance frameworks to provide industry and stakeholders with a clearer path forward for offshore decommissioning. The principles and framework developed in this paper are equally applicable for informing responsible decommissioning of offshore renewable energy infrastructure, in particular wind turbines, a field that is accelerating rapidly.

2.
Zootaxa ; 5053(1): 1-285, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34810850

ABSTRACT

This paper is a checklist of the fishes that have been documented, through both published and unpublished sources, in marine and estuarine waters, and out 200 miles, from the United States-Canadian border on the Beaufort Sea to Cabo San Lucas, Mexico. A minimum of 241 families and 1,644 species are known within this range, including both native and nonnative species. For each of these species, we include maximum size, geographic and depth ranges, whether it is native or nonnative, as well as a brief mention of any taxonomic issues.


Subject(s)
Fishes , Animals , Canada , Mexico
3.
PLoS One ; 15(11): e0242017, 2020.
Article in English | MEDLINE | ID: mdl-33170883

ABSTRACT

Offshore oil and gas platforms have a finite life of production operations. Once production ceases, decommissioning options for the platform are assessed. The role that a platform's jacket plays as fish habitat can inform the decommissioning decision. In this study, conducted along the crossbeams of a California platform jacket and using an ROV, we compared estimates of fish diversity and densities determined from a targeted "biological" survey with those from a replicated "structural" survey. We found that the water column fish species assemblages characterized by the two methods were similar. By contrast, the two survey methods yielded different species assemblages inhabiting the crossbeam at the platform jacket base. This difference occurred because, at least off California, the platform jacket base species diversity tends to be highest where the bottom crossbeam is undercut, creating sheltering sites for many species. Because the structural method inadequately imaged the seafloor-crossbeam interface, particularly where a gap occurred between crossbeam and seafloor, substantial numbers of fishes were not visible. While we cannot extrapolate from this study to all platforms' worldwide, it is clear that routine platform structural integrity surveys may be a valuable source for opportunistic marine community surveys. Intentional planning of the structural survey to incorporate relatively minor variations (e.g., maintaining fixed ROV distance from the infrastructure and consistent 90° camera angle) coupled with a deliberate consideration of the platform ecology (e.g., positioning the ROV to capture the seafloor-crossbeam interface) can substantially improve the effects on fish assemblage assessments from routine structural surveys without compromising the integrity assessment. We suggest that these biases should be both acknowledged and, understood when using routine structural surveys to inform platform ecology assessment. Additional consideration may be given to structural surveys that incorporate incremental adjustments to provide better data applicability to biological assessments.


Subject(s)
Environmental Monitoring/methods , Robotics/methods , Animals , Biodiversity , California , Ecosystem , Fishes/classification , Oil and Gas Fields , Population Density , Surveys and Questionnaires/statistics & numerical data , Water
4.
J Fish Biol ; 97(5): 1573-1575, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32876944

ABSTRACT

We report the largest specimen from the stromateoid family Nomeidae. The specimen, measuring 1283 mm total length unpreserved, was caught on hook and line from shore in Port Hueneme, California, USA in June 2019. Despite scavenging damage, the specimen was identified as a longfin cigarfish, Cubiceps paradoxus, using morphological characters and molecular techniques. This is the third record of C. paradoxus from California. We also provide an account of a previously unreported C. paradoxus collected off the US-Mexico Border in 1999 that was examined but not preserved.


Subject(s)
Body Size , Perciformes/anatomy & histology , Animals , California , Mexico
5.
Ecol Appl ; 30(8): e02185, 2020 12.
Article in English | MEDLINE | ID: mdl-32460380

ABSTRACT

There are currently thousands of offshore platforms in place for oil and gas extraction worldwide, and decommissioning efforts over the next three decades are estimated to cost more than US$200 billion. As platforms reach the end of their useful lifetime, operators and regulatory agencies will assess the environmental impact of potential decommissioning strategies. Among the many factors that will be weighed in preparation for these major economic and engineering challenges is the fate of the fish and invertebrate communities that inhabit the structures underwater. Offshore platforms act as inadvertent artificial reefs, and some are recognized among the most productive fish habitats in the global oceans. We present a model for forecasting changes to fish communities surrounding offshore installations following a series of decommissioning alternatives. Using 24 platforms off southern California, we estimate fish biomass and somatic production under three possible decommissioning scenarios: leave in place, partial removal at 26-m depth, and complete removal of the platform and underlying shell mound. We used fish density and size data from scuba and submersible surveys of the platforms from 1995-2013 to estimate biomass and annual somatic production. Bottom trawl surveys were used to characterize future fish assemblages at platform sites under the complete-removal decommissioning scenario. Based on a conservatively modeled extrapolation of the survey data, we found that complete removal of a platform resulted in 95% or more reduction in the average fish biomass and annual somatic production at the site, while partial removal resulted in far smaller losses, averaging 10% or less. In the event that all surveyed platforms are completely removed, we estimated a total loss of more than 28,000 kg of fish biomass in the Southern California Bight. Platform habitats, which attract reef-dwelling fish species, had minimal overlap in community composition with the surrounding soft-bottom habitat. To best serve the wide range of stakeholder interests, the site-specific biomass, productivity and species composition information provided in this study should be incorporated into strategic decommissioning planning. This approach could be used as a model for informing "rigs to reefs" discussions occurring worldwide.


Subject(s)
Fishes , Oil and Gas Fields , Animals , Ecosystem , Environment , Invertebrates
6.
Integr Environ Assess Manag ; 11(4): 584-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26331484

ABSTRACT

California's oil platforms are nearing the end of their productive lives and therefore will be decommissioned in the near future. These structures have been shown to be important habitats for both settlement and growth for reef fishes. Important information on the biological effects (i.e., loss of biomass and production) of different decommissioning options has not yet been explored in detail. An important step in the assessment of these different decommissioning options is to look at the potential loss of fish production and habitat under the different alternatives. Using the large amount of information available on fish abundances at these structures, we have created a model to estimate the standing stock of fishes and production that would be lost because of both partial (removal from surface to 85 ft) and complete removal (the 2 decommissioning options being considered). Complete removal of a platform will likely eliminate most of its fish biomass; however, this study has shown that for rockfishes, which settle predominantly below 85 feet (26 m) and move deeper as they age, partial removal through topping would leave more than 90% of the fish biomass at the deeper platforms. Modeling of larval dispersal suggests that platforms provide an important opportunity for recruitment of fish larvae and that many larvae produced near the platforms would settle elsewhere in the region. The results presented here indicate that, even if topped, the potential contribution of platform habitat to biological resources (e.g., fish production) in this region is significant.


Subject(s)
Fisheries/statistics & numerical data , Oil and Gas Fields , Animals , Biomass , California , Ecosystem , Fishes/growth & development
7.
Mar Pollut Bull ; 60(1): 131-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19751942

ABSTRACT

Marine debris is a global concern that pollutes the world's oceans, including deep benthic habitats where little is known about the extent of the problem. We provide the first quantitative assessment of debris on the seafloor (20-365 m depth) in submarine canyons and the continental shelf off California, using the Delta submersible. Fishing activities were the most common contributors of debris. Highest densities occurred close to ports off central California and increased significantly over the 15-year study period. Recreational monofilament fishing line dominated this debris. Debris was less dense and more diverse off southern than central California. Plastic was the most abundant material and will likely persist for centuries. Disturbance to habitat and organisms was low, and debris was used as habitat by some fishes and macroinvertebrates. Future trends in human activities on land and at sea will determine the type and magnitude of debris that accumulates in deep water.


Subject(s)
Ecosystem , Environmental Monitoring , Geologic Sediments/analysis , Seawater/analysis , Waste Products/analysis , Water Pollutants/analysis , Animals , California , Fishes , Geography , Human Activities , Humans , Invertebrates , Plastics/analysis , Plastics/toxicity , Risk Assessment , Seawater/adverse effects , Time Factors , Video Recording , Waste Products/adverse effects , Water Pollutants/toxicity
8.
Ecol Lett ; 12(9): 898-908, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19601954

ABSTRACT

Phylogenetic divergences have recently been included in analyses that aim to elucidate patterns of biodiversity in space and time. We introduce a generalized framework for two widely used phylogenetic diversity (PD) indices: Raos quadratic entropy (QE) and Faiths PD. We demonstrate how this framework can be used to partition diversity simultaneously across evolutionary periods and spatial (e.g. local communities in a region) and / or time units (e.g. a community investigated yearly). From a study of rockfish hotspot diversity from the Southern California Bight, the analysis of PD revealed a recent decrease in the amount of fish caught from six evolutionary deep lineages, with implications for the community structure of this speciose group. This approach, which can also be applied to trees assembled from functional traits, contributes to our understanding of the mechanisms that underpin community organization and to the description of the consequences of human-driven impacts in the environment.


Subject(s)
Biodiversity , Biological Evolution , Fishes/physiology , Animals , Fisheries , Phylogeny , Time Factors
9.
Ecol Appl ; 17(8): 2268-80, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18213967

ABSTRACT

Selective mortality, whether caused naturally by predation or through the influence of harvest practices, initiates changes within populations when individuals possessing certain heritable traits have increased fitness. Theory predicts that increased mortality rates will select for changes in a number of different life history characteristics. For example, fishing often targets larger individuals and has been shown repeatedly to alter population size structure and growth rates, and the timing of maturation. For sex-changing species, selective fishing practices can affect additional traits such as the mature population sex ratio and the timing of sexual transformation. Using historical comparisons, we examined the effects of exploitation on life history characteristics of California sheephead, Semicossyphus pulcher, a temperate protogynous (female-male sex changer) labrid that inhabits nearshore rocky environments from central California, USA, to southern Baja California, Mexico. Recreational fishing intensified and an unregulated commercial live-fish fishery developed rapidly in southern California between the historical and current studies. Collections of S. pulcher from three locations (Bahia Tortugas, Catalina Island, and San Nicolas Island) in 1998 were compared with data collected 20-30 years previously to ascertain fishery-induced changes in life history traits. At Bahia Tortugas, where fishing by the artisanal community remained light and annual survivorship stayed high, we observed no changes in size structure or shifts in the timing of maturation or the timing of sex change. In contrast, where recreational (Catalina) and commercial (San Nicolas) fishing intensified and annual survivorship correspondingly declined, males and females shifted significantly to smaller body sizes, females matured earlier and changed sex into males at both smaller sizes and younger ages and appeared to have a reduced maximum lifespan. Mature sex ratios (female:male) increased at San Nicolas, despite a twofold reduction in the mean time spent as a mature female. Proper fisheries management requires measures to prevent sex ratio skew, sperm limitation, and reproductive failure because populations of sequential hermaphrodites are more sensitive to size-selective harvest than separate-sex species. This is especially true for S. pulcher, where different segments of the fishery (commercial vs. recreational) selectively target distinct sizes and therefore sexes in different locations.


Subject(s)
Fisheries , Fishes/physiology , Animals , Body Size , California , Conservation of Natural Resources , Female , Male , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...