Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 16(2)2024 02 09.
Article in English | MEDLINE | ID: mdl-38262053

ABSTRACT

Despite recent advances in the field of microphysiological systems (MPSs), availability of models capable of mimicking the interactions between the nervous system and innervated tissues is still limited. This represents a significant challenge in identifying the underlying processes of various pathological conditions, including neuropathic, cardiovascular and metabolic disorders. In this novel study, we introduce a compartmentalized three-dimensional (3D) coculture system that enables physiologically relevant tissue innervation while recording neuronal excitability. By integrating custom microelectrode arrays into tailored glass chips microfabricated via selective laser-etching, we developed an entirely novel class of innervation MPSs (INV-MPS). This INV-MPS allows for manipulation, visualization, and electrophysiological analysis of individual axons innervating complex 3D tissues. Here, we focused on sensory innervation of 3D tumor tissue as a model case study since cancer-induced pain represents a major unmet medical need. The system was compared with existing nociception models and successfully replicated axonal chemoattraction mediated by nerve growth factor (NGF). Remarkably, in the absence of NGF, 3D cancer spheroids cocultured in the adjacent compartment induced sensory neurons to consistently cross the separating barrier and establish fine innervation. Moreover, we observed that crossing sensory fibers could be chemically excited by distal application of known pain-inducing agonists only when cocultured with cancer cells. To our knowledge, this is the first system showcasing morphological and electrophysiological analysis of 3D-innervated tumor tissuein vitro, paving the way for a plethora of studies into innervation-related diseases and improving our understanding of underlying pathophysiology.


Subject(s)
Neoplasms , Nerve Growth Factor , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Microelectrodes , Sensory Receptor Cells/metabolism , Pain/metabolism , Ganglia, Spinal/physiology
2.
Sensors (Basel) ; 21(9)2021 May 03.
Article in English | MEDLINE | ID: mdl-34063656

ABSTRACT

Our latest advances in the field of miniaturized optical PM sensors are presented. This sensor combines a hybrid fluidic-optronic CMOS (holed retina) that is able to record a specific irradiance pattern scattered by an illuminated particle (scattering signature), while enabling the circulation of particles toward the sensing area. The holed retina is optically coupled with a monolithic, millimeter-sized, refracto-reflective optical system. The latter notably performs an optical pre-processing of signatures, with a very wide field of view of scattering angles. This improves the sensitivity of the sensors, and simplifies image processing. We report the precise design methodology for such a sensor, as well as its fabrication and characterization using calibrated polystyrene beads. Finally, we discuss its ability to characterize particles and its potential for further miniaturization and integration.

3.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562650

ABSTRACT

Plasmodium parasites' invasion of their target cells is a complex, multi-step process involving many protein-protein interactions. Little is known about how complex the interaction with target cells is in Plasmodium vivax and few surface molecules related to reticulocytes' adhesion have been described to date. Natural selection, functional and structural analysis were carried out on the previously described vaccine candidate P. vivax merozoite surface protein 10 (PvMSP10) for evaluating its role during initial contact with target cells. It has been shown here that the recombinant carboxyl terminal region (rPvMSP10-C) bound to adult human reticulocytes but not to normocytes, as validated by two different protein-cell interaction assays. Particularly interesting was the fact that two 20-residue-long regions (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434) were able to inhibit rPvMSP10-C binding to reticulocytes and rosette formation using enriched target cells. These peptides were derived from PvMSP10 epidermal growth factor (EGF)-like domains (precisely, from a well-defined electrostatic zone) and consisted of regions having the potential of being B- or T-cell epitopes. These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.


Subject(s)
Antigens, Protozoan/metabolism , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism , Reticulocytes/parasitology , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Binding Sites/genetics , Conserved Sequence , Epitopes/chemistry , Epitopes/genetics , Epitopes/metabolism , Genes, Protozoan , Humans , In Vitro Techniques , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Protein Domains/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reticulocytes/metabolism , Static Electricity
4.
Nanotechnology ; 30(26): 265301, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-30849769

ABSTRACT

This paper presents a maskless method to manufacture fused silica chips for low-noise resistive-pulse sensing. The fabrication includes wafer-scale density modification of fused silica with a femtosecond-pulsed laser, low-pressure chemical vapor deposition (LPVCD) of silicon nitride (SiN x ) and accelerated chemical wet etching of the laser-exposed regions. This procedure leads to a freestanding SiN x window, which is permanently attached to a fused silica support chip and the resulting chips are robust towards Piranha cleaning at ∼80 °C. After parallel chip manufacturing, we created a single nanopore in each chip by focused helium-ion beam or by controlled breakdown. Compared to silicon chips, the resulting fused silica nanopore chips resulted in a four-fold improvement of both the signal-to-noise ratio and the capture rate for signals from the translocation of IgG1 proteins at a recording bandwidth of 50 kHz. At a bandwidth of ∼1 MHz, the noise from the fused silica nanopore chips was three- to six-fold reduced compared to silicon chips. In contrast to silicon chips, fused silica chips showed no laser-induced current noise-a significant benefit for experiments that strive to combine nanopore-based electrical and optical measurements.

5.
Biomicrofluidics ; 12(2): 024115, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657658

ABSTRACT

In order to leverage the immense potential of droplet microfluidics, it is necessary to simplify the process of chip design and fabrication. While polydimethylsiloxane (PDMS) replica molding has greatly revolutionized the chip-production process, its dependence on 2D-limited photolithography has restricted the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. To break free from these restrictions while keeping fabrication straighforward, we introduce an approach to produce complex multi-height (3D) droplet microfluidic glass molds and subsequent chip production by PDMS replica molding. The glass molds are fabricated with sub-micrometric resolution using femtosecond laser machining technology, which allows directly realizing designs with multiple levels or even continuously changing heights. The presented technique significantly expands the experimental capabilities of the droplet microfluidic chip. It allows direct fabrication of multilevel structures such as droplet traps for prolonged observation and optical fiber integration for fluorescence detection. Furthermore, the fabrication of novel structures based on sloped channels (ramps) enables improved droplet reinjection and picoinjection or even a multi-parallelized drop generator based on gradients of confinement. The fabrication of these and other 3D-features is currently only available at such resolution by the presented strategy. Together with the simplicity of PDMS replica molding, this provides an accessible solution for both specialized and non-specialized labs to customize microfluidic experimentation and expand their possibilities.

6.
ACS Nano ; 7(5): 4527-36, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23614396

ABSTRACT

Fano resonances in hybridized systems formed from the interaction of bright modes only are reported. Despite precedent works, we demonstrate theoretically and experimentally that Fano resonances can be obtained by destructive interference between two bright dipolar modes out of phase. A simple oscillator model is provided to predict and fit the far-field scattering. The predictions are verified with numerical calculations using a surface integral equation method for a wide range of geometrical parameters. The validity of the model is then further demonstrated with experimental dark-field scattering measurements on actual nanostructures in the visible range. A remarkable set of properties like crossings, avoided crossings, inversion of subradiant and superradiant modes and a plasmonic equivalent of a bound state in the continuum are presented. The nanostructure, that takes advantage of the combination of Fano resonance and nanogap effects, also shows high tunability and strong near-field enhancement. Our study provides a general understanding of Fano resonances as well as a simple tool for engineering their spectral features.

7.
Opt Express ; 21(23): 28710-8, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514383

ABSTRACT

The second harmonic generation from gold nanoparticles trapped into realistic and idealized gold nanoantennas is numerically investigated using a surface integral equations technique. It is observed that the presence of a nanoparticle in the nanoantenna gap dramatically modifies the second harmonic intensity scattered into the far-field. These results clearly demonstrate that second harmonic generation is a promising alternative to the conventional linear optical methods for the detection of trapping events at the nanoscale.

8.
Opt Express ; 20(12): 12860-5, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714312

ABSTRACT

We present a novel plasmonic antenna geometry - the double resonant antenna (DRA) - that is optimized for second-harmonic generation (SHG). This antenna is based on two gaps coupled to each other so that a resonance at the fundamental and at the doubled frequency is obtained. Furthermore, the proximity of the localized hot spots allows for a coupling and spatial overlap between the two field enhancements at both frequencies. Using such a structure, both the generation of the second-harmonic and its re-emission into the far-field are significantly increased when compared with a standard plasmonic dipole antenna. Such DRA are fabricated in aluminium using electron beam lithography and their linear and nonlinear responses are studied experimentally and theoretically.

9.
ACS Nano ; 6(1): 256-64, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22148851

ABSTRACT

Nanoelectromechanical systems (NEMS) as integrated components for ultrasensitive sensing, time keeping, or radio frequency applications have driven the search for scalable nanomechanical transduction on-chip. Here, we present a hybrid silicon-on-insulator platform for building NEM oscillators in which fin field effect transistors (FinFETs) are integrated into nanomechanical silicon resonators. We demonstrate transistor amplification and signal mixing, coupled with mechanical motion at very high frequencies (25-80 MHz). By operating the transistor in the subthreshold region, the power consumption of resonators can be reduced to record-low nW levels, opening the way for the parallel operation of hundreds of thousands of NEM oscillators. The electromechanical charge modulation due to the field effect in a resonant transistor body constitutes a scalable nanomechanical motion detection all-on-chip and at room temperature. The new class of tunable NEMS represents a major step toward their integration in resonator arrays for applications in sensing and signal processing.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Nanotechnology/instrumentation , Oscillometry/instrumentation , Transducers , Energy Transfer , Equipment Design , Equipment Failure Analysis , Molecular Conformation , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...