Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Cell Stem Cell ; 29(4): 610-619.e5, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35395188

ABSTRACT

Human pluripotent stem cell (hPSC)-derived myogenic progenitor cell (MPC) transplantation is a promising therapeutic approach for a variety of degenerative muscle disorders. Here, using an MPC-specific fluorescent reporter system (PAX7::GFP), we demonstrate that hPSC-derived MPCs can contribute to the regeneration of myofibers in mice following local injury and in mice deficient of dystrophin (mdx). We also demonstrate that a subset of PAX7::GFP MPCs engraft within the basal lamina of regenerated myofibers, adopt a quiescent state, and contribute to regeneration upon reinjury and in mdx mouse models. This subset of PAX7::GFP MPCs undergo a maturation process and remodel their molecular characteristics to resemble those of late-stage fetal MPCs/adult satellite cells following in vivo engraftment. These in-vivo-matured PAX7::GFP MPCs retain a cell-autonomous ability to regenerate and can repopulate in the niche of secondary recipient mice, providing a proof of principle for future hPSC-based cell therapy for muscle disorders.


Subject(s)
Pluripotent Stem Cells , Satellite Cells, Skeletal Muscle , Animals , Cell Differentiation , Dystrophin , Humans , Mice , Mice, Inbred mdx , Muscle Development , Muscle, Skeletal , Myoblasts , Stem Cell Transplantation
2.
J Orthop Res ; 40(12): 2743-2753, 2022 12.
Article in English | MEDLINE | ID: mdl-35239216

ABSTRACT

Fibroadipogenic progenitor (FAP) cells are implicated as a major source of fatty infiltration (FI) in murine rotator cuff (RC) injury, but FAP cell response after RC tear in a rabbit model is unknown. This study determined whether changes in FAP cell count after an RC tear predate muscle degeneration in a clinically relevant rabbit model. We hypothesized increases in FAP cell count correlate temporally with RC degeneration. New Zealand white rabbits (n = 26) were evaluated at 1, 2, 4, and 6 weeks after unilateral full-thickness tenotomy of supraspinatus and infraspinatus tendons. FI area and adipocyte size were histologically analyzed, muscle density was measured by computerized tomography, and quantification of FAP cells was measured by flow cytometry and immunohistochemistry. The percentage of intrafascicular adipocyte area increased over time in supraspinatus muscle samples (p = 0.03), significantly between 1- and 6-week samples (p = 0.04). There were no differences in perifascicular adipocyte area percentages between time points. Peak increase in FAP cell count occurred at 1-week (p = 0.03), with a decrease in the following weeks. There was a negative correlation between supraspinatus adipocyte area and FAP cell count (p < 0.05). On computed tomography (CT) scan, maximal decrease in muscle density was observed in the 4th to 6th weeks. In summary, FAP cell response occurred early after tenotomy and did not correlate temporally with increases in FI. This suggests that FAP cell response may predate degenerative changes, and early targeting of FAPs before adipocyte maturation could blunt FI after RC tear.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Mice , Rabbits , Animals , Rotator Cuff/diagnostic imaging , Rotator Cuff/pathology , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Tendons/pathology , Muscular Atrophy/pathology , Stem Cells/physiology
3.
Front Physiol ; 12: 724010, 2021.
Article in English | MEDLINE | ID: mdl-34721058

ABSTRACT

Intermediate filaments (IFs) are a primary structural component of the cytoskeleton extending throughout the muscle cell (myofiber). Mechanotransduction, the process by which mechanical force is translated into a biochemical signal to activate downstream cellular responses, is crucial to myofiber function. Mechanical forces also act on the nuclear cytoskeleton, which is integrated with the myofiber cytoskeleton by the linker of the nucleoskeleton and cytoskeleton (LINC) complexes. Thus, the nucleus serves as the endpoint for the transmission of force through the cell. The nuclear lamina, a dense meshwork of lamin IFs between the nuclear envelope and underlying chromatin, plays a crucial role in responding to mechanical input; myofibers constantly respond to mechanical perturbation via signaling pathways by activation of specific genes. The nucleus is the largest organelle in cells and a master regulator of cell homeostasis, thus an understanding of how it responds to its mechanical environment is of great interest. The importance of the cell nucleus is magnified in skeletal muscle cells due to their syncytial nature and the extreme mechanical environment that muscle contraction creates. In this review, we summarize the bidirectional link between the organization of the nucleoskeleton and the contractile features of skeletal muscle as they relate to muscle function.

4.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360831

ABSTRACT

The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.


Subject(s)
Aging/pathology , Muscle, Skeletal/pathology , Neuromuscular Diseases/pathology , Neuromuscular Junction/pathology , Animals , Humans
5.
Nat Commun ; 12(1): 3175, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039988

ABSTRACT

Antagonistic pleiotropy is a foundational theory that predicts aging-related diseases are the result of evolved genetic traits conferring advantages early in life. Here we examine CaMKII, a pluripotent signaling molecule that contributes to common aging-related diseases, and find that its activation by reactive oxygen species (ROS) was acquired more than half-a-billion years ago along the vertebrate stem lineage. Functional experiments using genetically engineered mice and flies reveal ancestral vertebrates were poised to benefit from the union of ROS and CaMKII, which conferred physiological advantage by allowing ROS to increase intracellular Ca2+ and activate transcriptional programs important for exercise and immunity. Enhanced sensitivity to the adverse effects of ROS in diseases and aging is thus a trade-off for positive traits that facilitated the early and continued evolutionary success of vertebrates.


Subject(s)
Aging/physiology , Biological Evolution , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Reactive Oxygen Species/metabolism , Vertebrates/physiology , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Calcium Signaling/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Gene Editing , Gene Knock-In Techniques , Male , Mice , Models, Animal , Oxidation-Reduction , Phylogeny , Physical Fitness/physiology , Point Mutation
6.
Exp Gerontol ; 150: 111338, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33862137

ABSTRACT

Mechanical forces are conducted through myofibers and into nuclei to regulate muscle development, hypertrophy, and homeostasis. We hypothesized that nuclei in aged muscle have changes in the nuclear envelope and associated proteins, resulting in altered markers of mechano-signaling. METHODS: YAP/TAZ protein expression and gene expression of downstream targets, Ankrd1 and Cyr61, were evaluated as mechanotransduction indicators. Expression of proteins in the nuclear lamina and the nuclear pore complex (NPC) were assessed, and nuclear morphology was characterized by electron microscopy. Nuclear envelope permeability was assessed by uptake of 70 kDa fluorescent dextran. RESULTS: Nuclear changes with aging included a relative decrease of lamin ß1 and Nup107, and a relative increase in Nup93, which could underlie the aberrant nuclear morphology, increased nuclear leakiness, and elevated YAP/TAZ signaling. CONCLUSION: Aged muscles have hyperactive nuclear-cytoplasmic signaling, indicative of altered nuclear mechanotransduction. These data highlight a possible role for the nucleus in aging-related aberrant mechano-sensing.


Subject(s)
Cell Nucleus , Mechanotransduction, Cellular , Muscle, Skeletal , Nuclear Envelope , Signal Transduction
7.
FASEB J ; 35(2): e21276, 2021 02.
Article in English | MEDLINE | ID: mdl-33423297

ABSTRACT

Mitochondrial derangement is an important contributor to the pathophysiology of muscular dystrophies and may be among the earliest cellular deficits. We have previously shown that disruption of Mss51, a mammalian skeletal muscle protein that localizes to the mitochondria, results in enhanced muscle oxygen consumption rate, increased endurance capacity, and improved limb muscle strength in mice with wildtype background. Here, we investigate whether Mss51 deletion in the mdx murine model of Duchenne muscular dystrophy (mdx-Mss51 KO) counteracts the muscle pathology and mitochondrial irregularities observed in mdx mice. We found that mdx-Mss51 KO mice had increased myofiber oxygen consumption rates and an amelioration of muscle histopathology compared to mdx counterparts. This corresponded with greater treadmill endurance and less percent fatigue in muscle physiology, but no improvement in forelimb grip strength or limb muscle force production. These findings suggest that although Mss51 deletion ameliorates the skeletal muscle mitochondrial respiration defects in mdx and improves fatigue resistance in vivo, the lack of improvement in force production suggests that this target alone may be insufficient for a therapeutic effect.


Subject(s)
Gene Deletion , Mitochondrial Proteins/genetics , Muscle Strength , Muscular Dystrophy, Duchenne/genetics , Transcription Factors/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Oxygen Consumption
8.
Biotechniques ; 69(5): 388-391, 2020 11.
Article in English | MEDLINE | ID: mdl-33000629

ABSTRACT

Isolated myofibers are commonly used to understand the function of skeletal muscle in vivo. This can involve single isolated myofibers obtained from dissection or from enzymatic dissociation. Isolation via dissection allows control of sarcomere length and preserves tendon attachment but is labor-intensive, time-consuming and yields few viable myofibers. In contrast, enzymatic dissociation is fast and facile, produces hundreds of myofibers, and more importantly reduces the number of muscles/animals needed for studies. Biomechanical properties of the sarcolemma have been studied using myofibers from the extensor digitorum longus, but this has been limited to dissected myofibers, making data collection slow and difficult. We have modified this tool to perform biomechanical measurements of the sarcolemma in dissociated myofibers from the flexor digitorum brevis.


Subject(s)
Cell Culture Techniques/methods , Muscle Fibers, Skeletal/cytology , Sarcolemma/physiology , Animals , Biomechanical Phenomena , Elasticity , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Fibers, Skeletal/ultrastructure
9.
Muscle Nerve ; 62(6): 757-761, 2020 12.
Article in English | MEDLINE | ID: mdl-32918339

ABSTRACT

INTRODUCTION: Our aim was to assess key muscle imaging and contractility parameters in the Duchenne muscular dystrophy (DMD) rat model (Dmd-KO rat), which have not yet been characterized sufficiently. METHODS: We performed in-vivo magnetic resonance imaging (MRI) for thigh and leg muscles, and performed hematoxylin and eosin (H&E) staining and in-vivo muscle contractility testing in specific hindlimb muscles. RESULTS: MRI prior to testing muscle contractility revealed multiple, unevenly distributed focal hyperintensities in the Dmd-KO rat quadriceps and tibialis anterior muscles. H&E staining showed corresponding areas of inflammation and ongoing regeneration. In-vivo contractile testing showed maximal force generated by Dmd-KO muscles was significantly lower, and susceptibility to injury was ~ two-fold greater in the Dmd-KO rats compared to wild-type (WT) rats. DISCUSSION: Together, the MRI findings, histological findings, and the low strength and high susceptibility to injury in muscles support use of the Dmd-KO rat as an animal model of DMD.


Subject(s)
Disease Models, Animal , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Rats , Animals , Animals, Genetically Modified , Dystrophin/genetics , Gene Knockout Techniques , Hindlimb , Magnetic Resonance Imaging , Male , Muscle Contraction/genetics , Muscle Strength/genetics , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Phenotype , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/pathology , Quadriceps Muscle/physiopathology
10.
Neurosci Lett ; 737: 135304, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32818587

ABSTRACT

The focus of this review is on Duchenne muscular dystrophy (DMD), which is caused by the absence of the protein dystrophin and is characterized as a neuromuscular disease in which muscle weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. Considerable attention has been dedicated to studying muscle fiber damage, but data show that both human patients and animal models for DMD present with fragmented neuromuscular junction (NMJ) morphology. In addition to pre- and post-synaptic abnormalities, studies indicate increased susceptibility of the NMJ to contraction-induced injury, with corresponding functional changes in neuromuscular transmission and nerve-evoked electromyographic activity. Such findings suggest that alterations in the NMJ of dystrophic muscle may play a role in muscle weakness via impairment of neuromuscular transmission. Further work is needed to fully understand the role of the NMJ in the weakness, susceptibility to injury, and progressive wasting associated with DMD.


Subject(s)
Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Neuromuscular Junction/pathology , Animals , Dystrophin/genetics , Dystrophin/metabolism , Humans , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Neuromuscular Junction/metabolism
11.
Front Neurosci ; 14: 739, 2020.
Article in English | MEDLINE | ID: mdl-32760246

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of dystrophin with progressive degeneration of skeletal muscles. Most studies regarding DMD understandably focus on muscle, but dystrophin is also expressed in the central nervous system, potentially resulting in cognitive and behavioral changes. Animal models are being used for developing more comprehensive neuromonitoring protocols and clinical image acquisition procedures. The recently developed DMD rat is an animal model that parallels the progressive muscle wasting seen in DMD. Here, we studied the brain and temporalis muscle structure and neurochemistry of wild type (WT) and dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both structural and neurochemistry alterations were observed in the DMD rat brain and the temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3; DMD = 1501 mm3; p = 0.039, Cohen's d = 1.867), but not normalized (WT = 4.27; DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain volume correlated to severity of muscle dystrophy (r = -0.975). Neurochemical changes in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and GABA in the hippocampus. Such findings could indicate disturbed motor and sensory signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable osmoregulation in the dystrophin-null brain.

12.
Biomaterials ; 255: 120154, 2020 10.
Article in English | MEDLINE | ID: mdl-32562942

ABSTRACT

Volumetric muscle loss (VML) overwhelms the native regenerative capabilities of skeletal muscle and has few effective treatments to regain lost muscle mass and function. Tissue engineered muscle constructs designed to promote neuromuscular regeneration are a promising therapeutic avenue. To date, there has been no engineered muscle construct for VML treatment that has incorporated a pharmacologic agent to promote neuromuscular regeneration. Here, we have modified electrospun fibrin microfiber bundles, which have demonstrated muscle regenerative potential, with the heparan sulfate proteoglycan, agrin, to stimulate innervation post-VML. Myoblasts cultured on microfiber bundles with either soluble or chemically tethered agrin demonstrated statistically significant increased clustering of acetylcholine receptors (AChRs) with soluble agrin displaying AChR clusters throughout the myofiber bundles, and tethered agrin displaying AChR clusters only at 10 µm from the substrate surface. Following implantation into murine VML defects for 4 weeks, constructs pre-treated with soluble or tethered agrin resulted in statistically significant increased neuromuscular junctions, regenerating myofibers, vascular infiltration, neural infiltration, and nuclear yes-associated protein (YAP) expression within the defect site compared to the control without agrin. The agrin-tethered microfiber bundles provided sustained agrin signaling within the regenerating site during the 4-week post-implantation periods and further augmented the density of regenerating myofibers in regenerated tissue with statistical significance compared to constructs with soluble agrin. These data demonstrate the neuromuscular regenerative potential of engineered muscle constructs pre-treated to induce AChR clustering with locally delivered agrin at the site of VML regeneration.


Subject(s)
Agrin , Muscle, Skeletal , Animals , Mice , Muscle Fibers, Skeletal , Neuromuscular Junction , Receptors, Cholinergic , Regeneration
13.
Am J Sports Med ; 48(9): 2277-2286, 2020 07.
Article in English | MEDLINE | ID: mdl-32543878

ABSTRACT

BACKGROUND: Clinical use of platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) has gained momentum as treatment for muscle injuries. Exosomes, or small cell-derived vesicles, could be helpful if they could deliver the same or better physiological effect without cell transplantation into the muscle. HYPOTHESIS: Local delivery of exosomes derived from PRP (PRP-exos) or MSCs (MSC-exos) to injured muscles hastens recovery of contractile function. STUDY DESIGN: Controlled laboratory study. METHODS: In a rat model, platelets were isolated from blood, and MSCs were isolated from bone marrow and expanded in culture; exosomes from both were isolated through ultracentrifugation. The tibialis anterior muscles were injured in vivo using maximal lengthening contractions. Muscles were injected with PRP-exos or MSC-exos (immediately after injury and 5 and 10 days after injury); controls received an equal volume of saline. Histological and biochemical analysis was performed on tissues for all groups. RESULTS: Injury resulted in a significant loss of maximal isometric torque (66% ± 3%) that gradually recovered over 2 weeks. Both PRP-exos and MSC-exos accelerated recovery, with similar faster recovery of contractile function over the saline-treated group at 5, 10, and 15 days after injury (P < .001). A significant increase in centrally nucleated fibers was seen with both types of exosome groups by day 15 (P < .01). Genes involved in skeletal muscle regeneration were modulated by different exosomes. Muscles treated with PRP-exos had increased expression of Myogenin gene (P < .05), whereas muscles treated with MSC-exos had reduced expression of TGF-ß (P < .05) at 10 days after muscle injury. CONCLUSION: Exosomes derived from PRP or MSCs can facilitate recovery after a muscle strain injury in a small-animal model likely because of factors that can modulate inflammation, fibrosis, and myogenesis. CLINICAL RELEVANCE: Given their small size, low immunogenicity, and ease with which they can be obtained, exosomes could represent a novel therapy for many orthopaedic ailments.


Subject(s)
Exosomes/transplantation , Mesenchymal Stem Cells , Muscle, Skeletal/injuries , Platelet-Rich Plasma , Animals , Rats , Recovery of Function , Regeneration
14.
JCI Insight ; 5(11)2020 06 04.
Article in English | MEDLINE | ID: mdl-32343677

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy. In the present study, when human induced pluripotent stem cells (hiPSCs) were differentiated into myoblasts, the myoblasts derived from DMD patient hiPSCs (DMD hiPSC-derived myoblasts) exhibited an identifiable DMD-relevant phenotype: myogenic fusion deficiency. Based on this model, we developed a DMD hiPSC-derived myoblast screening platform employing a high-content imaging (BD Pathway 855) approach to generate parameters describing morphological as well as myogenic marker protein expression. Following treatment of the cells with 1524 compounds from the Johns Hopkins Clinical Compound Library, compounds that enhanced myogenic fusion of DMD hiPSC-derived myoblasts were identified. The final hits were ginsenoside Rd and fenofibrate. Transcriptional profiling revealed that ginsenoside Rd is functionally related to FLT3 signaling, while fenofibrate is linked to TGF-ß signaling. Preclinical tests in mdx mice showed that treatment with these 2 hit compounds can significantly ameliorate some of the skeletal muscle phenotypes caused by dystrophin deficiency, supporting their therapeutic potential. Further study revealed that fenofibrate could inhibit mitochondrion-induced apoptosis in DMD hiPSC-derived cardiomyocytes. We have developed a platform based on DMD hiPSC-derived myoblasts for drug screening and identified 2 promising small molecules with in vivo efficacy.


Subject(s)
Fenofibrate/pharmacology , Ginsenosides/pharmacology , Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Myoblasts, Skeletal , Animals , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mice , Mice, Inbred mdx , Mice, Transgenic , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology
15.
Exp Neurol ; 331: 113328, 2020 09.
Article in English | MEDLINE | ID: mdl-32333909

ABSTRACT

In order to repair chronic nerve injuries (injuries repaired after a long delay), the damaged nerve segments are resected and stumps are bridged by grafts. Autografts remain the gold-standard, but outcomes are typically poor, even after long periods of recovery. In a recent study, we described the use of a nerve lengthening device to gradually elongate the proximal stump of a transected nerve towards the distal stump, enabling a tension-free end-to-end repair. This approach showed significantly improved outcomes in comparison to autografts in repairing acutely injured nerves. In this study, we compared the use of nerve lengthening/end-to-end repair (LETER) to isograft repair of chronically transected nerves in a rat model. Structural and functional regenerative outcomes following LETER were comparable to isograft-based repair, with no significant differences found in outcomes involving functional recovery or axon growth. These data demonstrate the feasibility of nerve lengthening as a viable graft-free strategy for repairing chronically injured nerves. Not unexpectedly, outcomes for chronic nerve injuries were less favorable in both groups compared to repair of acutely injured nerves. Nonetheless, the findings provide insight into barriers to restoring function after chronic nerve injury through novel comprehensive characterization of a diverse set of neuromuscular outcomes. This analysis revealed key parameters predicting functional recovery.


Subject(s)
Nerve Expansion/methods , Peripheral Nerve Injuries/surgery , Recovery of Function , Sciatic Nerve/transplantation , Anastomosis, Surgical , Animals , Axotomy , Chronic Disease , Isografts , Rats , Rats, Inbred Lew , Sciatic Nerve/injuries
16.
Am J Physiol Cell Physiol ; 318(1): C215-C224, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31721615

ABSTRACT

Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout (Krt18-KO) or dominant-negative mutant mice (Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.


Subject(s)
Intermediate Filaments/metabolism , Isometric Contraction , Keratin-18/metabolism , Muscle Strength , Muscle, Skeletal/metabolism , Animals , Female , Intermediate Filaments/ultrastructure , Keratin-18/deficiency , Keratin-18/genetics , Keratin-19/genetics , Keratin-19/metabolism , Male , Mice, Knockout , Muscle, Skeletal/ultrastructure , Signal Transduction
17.
J Tissue Eng Regen Med ; 13(12): 2266-2278, 2019 12.
Article in English | MEDLINE | ID: mdl-31670904

ABSTRACT

Outcomes of end-to-end nerve repairs are more successful compared with outcomes of repairs bridged by nerve grafts. However, end-to-end repairs are not always possible for large nerve gaps, as excessive tension may cause catastrophic failure. In this study, we built on previous nerve-lengthening studies to test the hypotheses that gradual lengthening of the proximal stump across a large nerve gap enables an end-to-end repair and such a repair results in more favourable regenerative outcomes than autografts, which represent the gold standard in bridging nerve gaps. To test these, we compared structural and functional outcomes in Lewis rats after repair of sciatic nerve gaps using either autografts or a novel compact internal fixator device, which was used to lengthen proximal nerve stumps towards the distal stump over 2 weeks, prior to end-to-end repair. Twelve weeks after the initial injury, outcomes following nerve lengthening/end-to-end repair were either comparable or superior in every measure compared with repair by autografting. The sciatic functional index was not significantly different between groups at 12 weeks. However, we observed a reduced rate of contracture and corresponding significant increase in paw length in the lengthening group. This functional improvement was consistent with structural regeneration; axonal growth distal to the injury was denser and more evenly distributed compared with the autograft group, suggesting substantial regeneration into both tibial and peroneal branches of the sciatic nerve. Our findings show that end-to-end repairs following nerve lengthening are possible for large gaps and that this strategy may be superior to graft-based repairs.


Subject(s)
Nerve Expansion , Nerve Regeneration , Sciatic Nerve , Animals , Rats , Rats, Inbred Lew , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Sciatic Nerve/transplantation , Transplantation, Autologous
18.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31527314

ABSTRACT

Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called MSS51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, ß-oxidation, glycolysis, and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51-KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51-KO mice showed an increased oxygen consumption rate compared with WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid ß-oxidation were enhanced in skeletal muscle of Mss51-KO mice compared with that of WT mice. We found that mice lacking Mss51 and challenged with a high-fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid ß-oxidation. These findings demonstrate that MSS51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Mitochondrial Proteins/deficiency , Muscle Fibers, Skeletal/metabolism , Obesity/metabolism , Transcription Factors/deficiency , Animals , CRISPR-Cas Systems/genetics , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids/metabolism , Female , Humans , Insulin , Insulin Resistance/genetics , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Muscle Fibers, Skeletal/cytology , Obesity/etiology , Obesity/genetics , Oxidation-Reduction , Oxidative Phosphorylation , Oxygen Consumption , Transcription Factors/genetics , Weight Gain , Zinc Fingers
19.
Am J Physiol Cell Physiol ; 317(1): C48-C57, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30995108

ABSTRACT

Mechanical forces regulate muscle development, hypertrophy, and homeostasis. Force-transmitting structures allow mechanotransduction at the sarcolemma, cytoskeleton, and nuclear envelope. There is growing evidence that Yes-associated protein (YAP) serves as a nuclear relay of mechanical signals and can induce a range of downstream signaling cascades. Dystrophin is a sarcolemma-associated protein, and its absence underlies the pathology in Duchenne muscular dystrophy. We tested the hypothesis that the absence of dystrophin in muscle would result in reduced YAP signaling in response to loading. Following in vivo contractile loading in muscles of healthy (wild-type; WT) mice and mice lacking dystrophin (mdx), we performed Western blots of whole and fractionated muscle homogenates to examine the ratio of phospho (cytoplasmic) YAP to total YAP and nuclear YAP, respectively. We show that in vivo contractile loading induced a robust increase in YAP expression and its nuclear localization in WT muscles. Surprisingly, in mdx muscles, active YAP expression was constitutively elevated and unresponsive to load. Results from qRT-PCR analysis support the hyperactivation of YAP in vivo in mdx muscles, as evidenced by increased gene expression of YAP downstream targets. In vitro assays of isolated myofibers plated on substrates with high stiffness showed YAP nuclear labeling for both genotypes, indicating functional YAP signaling in mdx muscles. We conclude that while YAP signaling can occur in the absence of dystrophin, dystrophic muscles have altered mechanotransduction, whereby constitutively active YAP results in a failure to respond to load, which could be attributed to the increased state of "pre-stress" with increased cytoskeletal and extracellular matrix stiffness.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Dystrophin/deficiency , Mechanotransduction, Cellular , Muscle Contraction , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/genetics , Disease Models, Animal , Dystrophin/genetics , Mice, Inbred mdx , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/physiopathology , Phosphorylation , YAP-Signaling Proteins
20.
J Vis Exp ; (143)2019 01 17.
Article in English | MEDLINE | ID: mdl-30735157

ABSTRACT

Assessment of skeletal muscle contractile function is an important measurement for both clinical and research purposes. Numerous conditions can negatively affect skeletal muscle. This can result in a loss of muscle mass (atrophy) and/or loss of muscle quality (reduced force per unit of muscle mass), both of which are prevalent in chronic disease, muscle-specific disease, immobilization, and aging (sarcopenia). Skeletal muscle function in animals can be evaluated by a range of different tests. All tests have limitations related to the physiological testing environment, and the selection of a specific test often depends on the nature of the experiments. Here, we describe an in vivo, non-invasive technique involving a helpful and easy assessment of force frequency-curve (FFC) in mice that can be performed on the same animal over time. This permits monitoring of disease progression and/or efficacy of a potential therapeutic treatment.


Subject(s)
Muscle, Skeletal/physiology , Animals , Area Under Curve , Biomechanical Phenomena , Electrodes , Male , Mice, Inbred C57BL , Muscle Contraction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL