Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39071335

ABSTRACT

RNA abundance quantification has become routine and affordable thanks to high-throughput "short-read" technologies that provide accurate molecule counts at the gene level. Similarly accurate and affordable quantification of definitive fulllength, transcript isoforms has remained a stubborn challenge, despite its obvious biological significance across a wide range of problems. "Long-read" sequencing platforms now produce data-types that can, in principle, drive routine definitive isoform quantification. However some particulars of contemporary long-read datatypes, together with isoform complexity and genetic variation, present bioinformatic challenges. We show here, using ONT data, that fast and accurate quantification of long-read data is possible and that it is improved by exome capture. To perform quantifications we developed lr-kallisto, which adapts the kallisto bulk and single-cell RNA-seq quantification methods for long-read technologies.

2.
BMC Genom Data ; 24(1): 52, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37710206

ABSTRACT

BACKGROUND: When polygenic risk score (PRS) is derived from summary statistics, independence between discovery and test sets cannot be monitored. We compared two types of PRS studies derived from raw genetic data (denoted as rPRS) and the summary statistics for IGAP (sPRS). RESULTS: Two variables with the high heritability in UK Biobank, hypertension, and height, are used to derive an exemplary scale effect of PRS. sPRS without APOE is derived from International Genomics of Alzheimer's Project (IGAP), which records ΔAUC and ΔR2 of 0.051 ± 0.013 and 0.063 ± 0.015 for Alzheimer's Disease Sequencing Project (ADSP) and 0.060 and 0.086 for Accelerating Medicine Partnership - Alzheimer's Disease (AMP-AD). On UK Biobank, rPRS performances for hypertension assuming a similar size of discovery and test sets are 0.0036 ± 0.0027 (ΔAUC) and 0.0032 ± 0.0028 (ΔR2). For height, ΔR2 is 0.029 ± 0.0037. CONCLUSION: Considering the high heritability of hypertension and height of UK Biobank and sample size of UK Biobank, sPRS results from AD databases are inflated. Independence between discovery and test sets is a well-known basic requirement for PRS studies. However, a lot of PRS studies cannot follow such requirements because of impossible direct comparisons when using summary statistics. Thus, for sPRS, potential duplications should be carefully considered within the same ethnic group.


Subject(s)
Alzheimer Disease , Hypertension , Humans , Databases, Factual , Ethnicity , Genomics , Hypertension/genetics
SELECTION OF CITATIONS
SEARCH DETAIL