Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Int J Health Geogr ; 22(1): 28, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898732

ABSTRACT

BACKGROUND: Mosquitoes and the diseases they transmit pose a significant public health threat worldwide, causing more fatalities than any other animal. To effectively combat this issue, there is a need for increased public awareness and mosquito control. However, traditional surveillance programs are time-consuming, expensive, and lack scalability. Fortunately, the widespread availability of mobile devices with high-resolution cameras presents a unique opportunity for mosquito surveillance. In response to this, the Global Mosquito Observations Dashboard (GMOD) was developed as a free, public platform to improve the detection and monitoring of invasive and vector mosquitoes through citizen science participation worldwide. METHODS: GMOD is an interactive web interface that collects and displays mosquito observation and habitat data supplied by four datastreams with data generated by citizen scientists worldwide. By providing information on the locations and times of observations, the platform enables the visualization of mosquito population trends and ranges. It also serves as an educational resource, encouraging collaboration and data sharing. The data acquired and displayed on GMOD is freely available in multiple formats and can be accessed from any device with an internet connection. RESULTS: Since its launch less than a year ago, GMOD has already proven its value. It has successfully integrated and processed large volumes of real-time data (~ 300,000 observations), offering valuable and actionable insights into mosquito species prevalence, abundance, and potential distributions, as well as engaging citizens in community-based surveillance programs. CONCLUSIONS: GMOD is a cloud-based platform that provides open access to mosquito vector data obtained from citizen science programs. Its user-friendly interface and data filters make it valuable for researchers, mosquito control personnel, and other stakeholders. With its expanding data resources and the potential for machine learning integration, GMOD is poised to support public health initiatives aimed at reducing the spread of mosquito-borne diseases in a cost-effective manner, particularly in regions where traditional surveillance methods are limited. GMOD is continually evolving, with ongoing development of powerful artificial intelligence algorithms to identify mosquito species and other features from submitted data. The future of citizen science holds great promise, and GMOD stands as an exciting initiative in this field.


Subject(s)
Aedes , Citizen Science , Animals , Humans , Artificial Intelligence , Mosquito Vectors , Mosquito Control/methods
2.
Citiz Sci ; 8(1)2023.
Article in English | MEDLINE | ID: mdl-38616822

ABSTRACT

Even as novel technologies emerge and medicines advance, pathogen-transmitting mosquitoes pose a deadly and accelerating public health threat. Detecting and mitigating the spread of Anopheles stephensi in Africa is now critical to the fight against malaria, as this invasive mosquito poses urgent and unprecedented risks to the continent. Unlike typical African vectors of malaria, An. stephensi breeds in both natural and artificial water reservoirs, and flourishes in urban environments. With An. stephensi beginning to take hold in heavily populated settings, citizen science surveillance supported by novel artificial intelligence (AI) technologies may offer impactful opportunities to guide public health decisions and community-based interventions. Coalitions like the Global Mosquito Alert Consortium (GMAC) and our freely available digital products can be incorporated into enhanced surveillance of An. stephensi and other vector-borne public health threats. By connecting local citizen science networks with global databases that are findable, accessible, interoperable, and reusable (FAIR), we are leveraging a powerful suite of tools and infrastructure for the early detection of, and rapid response to, (re)emerging vectors and diseases.

3.
Insects ; 13(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36005301

ABSTRACT

Mosquito-borne diseases continue to ravage humankind with >700 million infections and nearly one million deaths every year. Yet only a small percentage of the >3500 mosquito species transmit diseases, necessitating both extensive surveillance and precise identification. Unfortunately, such efforts are costly, time-consuming, and require entomological expertise. As envisioned by the Global Mosquito Alert Consortium, citizen science can provide a scalable solution. However, disparate data standards across existing platforms have thus far precluded truly global integration. Here, utilizing Open Geospatial Consortium standards, we harmonized four data streams from three established mobile apps­Mosquito Alert, iNaturalist, and GLOBE Observer's Mosquito Habitat Mapper and Land Cover­to facilitate interoperability and utility for researchers, mosquito control personnel, and policymakers. We also launched coordinated media campaigns that generated unprecedented numbers and types of observations, including successfully capturing the first images of targeted invasive and vector species. Additionally, we leveraged pooled image data to develop a toolset of artificial intelligence algorithms for future deployment in taxonomic and anatomical identification. Ultimately, by harnessing the combined powers of citizen science and artificial intelligence, we establish a next-generation surveillance framework to serve as a united front to combat the ongoing threat of mosquito-borne diseases worldwide.

4.
Insects ; 13(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35886800

ABSTRACT

The GLOBE Program's GLOBE Observer Mosquito Habitat Mapper is a no-cost citizen scientist data collection tool compatible with Android and iOS devices. Available in 14 languages and 126 countries, it supports mosquito vector surveillance, mitigation, and education by interested individuals and as part of participatory community surveillance programs. For low-resource communities where mosquito control services are inadequate, the Mosquito Habitat Mapper supports local health action, empowerment, and environmental justice. The tangible benefits to human health supported by the Mosquito Habitat Mapper have encouraged its wide adoption, with more than 32,000 observations submitted from 84 countries. The Mosquito Habitat Mapper surveillance and data collection tool is complemented by an open database, a map visualization interface, data processing and analysis tools, and a supporting education and outreach campaign. The mobile app tool and associated research and education assets can be rapidly deployed in the event of a pandemic or local disease outbreak, contributing to global readiness and resilience in the face of mosquito-borne disease. Here, we describe the app, the Mosquito Habitat Mapper information system, examples of Mosquito Habitat Mapper deployment in scientific research, and the outreach campaign that supports volunteer training and STEM education of students worldwide.

5.
Geohealth ; 5(10): e2021GH000436, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34712882

ABSTRACT

The GLOBE Program's GLOBE Observer application is a free citizen science mobile data collection and visualization tool compatible with iOS and Android operating systems. Citizen scientists armed with the app can report the mosquito larval habitats they identify using the GLOBE Mosquito Habitat Mapper tool. This data can complement the climate, weather, and land cover data obtained from satellite measurements by scientists who develop risk models for mosquito-borne diseases. Public participation in mosquito surveillance research provides the opportunity to obtain the volume, velocity and variety of data needed to fight the threat of vector-borne diseases, especially in under-resourced communities with minimal to no municipal surveillance and mitigation services. GLOBE Mosquito Habitat Mappers document and describe potential and active mosquito larval habitats in and around their homes and communities. An easy-to-use pictorial interface enables users to geolocate and describe oviposition sites encountered, count and identify mosquito larvae, and when appropriate, eliminate the larval habitats. During Mosquito Habitat Mapper's first 3 years of use, over 24,000 data observations have been reported throughout the world. This technical report summarizes GLOBE Mosquito Habitat Mapper data reported by GLOBE citizen scientists from three regions: Africa, Asia and the Pacific Islands, and Latin America and the Caribbean. Localized mosquito larvae distribution patterns were examined by comparing data collected in three cities in Senegal-Dakar, Touba, and Thilmakha. The Senegal data show habitat and genera differences among mosquitoes identified by citizen scientists in the cities and illustrates the potential of the app for community-based surveillance and research.

6.
Earth Space Sci ; 7(8): e2020EA001175, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999899

ABSTRACT

This technical report summarizes the GLOBE Observer data set from 1 April 2016 to 1 December 2019. GLOBE Observer is an ongoing NASA-sponsored international citizen science project that is part of the larger Global Learning and Observations to Benefit the Environment (GLOBE) Program, which has been in operation since 1995. GLOBE Observer has the greatest number of participants and geographic coverage of the citizen science projects in the Earth Science Division at NASA. Participants use the GLOBE Observer mobile app (launched in 2016) to collect atmospheric, hydrologic, and terrestrial observations. The app connects participants to satellite observations from Aqua, Terra, CALIPSO, GOES, Himawari, and Meteosat. Thirty-eight thousand participants have contributed 320,000 observations worldwide, including 1,000,000 georeferenced photographs. It would take an individual more than 13 years to replicate this effort. The GLOBE Observer app has substantially increased the spatial extent and sampling density of GLOBE measurements and more than doubled the number of measurements collected through the GLOBE Program. GLOBE Observer data are publicly available (at observer.globe.gov).

SELECTION OF CITATIONS
SEARCH DETAIL