Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Glob Health ; 112(7): 378-386, 2018 10.
Article in English | MEDLINE | ID: mdl-30380366

ABSTRACT

The increasing prevalence of antibiotic resistant pathogens poses a serious threat to global health. However, less emphasis has been placed to co-relate the gene expression and metabolism of antibiotic resistant pathogens. This study aims to elucidate gene expression and variations in metabolism of multidrug resistant Klebsiella pneumoniae after exposure to antibiotics. Phenotypic responses of three genotypically distinct carbapenem resistant Klebsiella pneumoniae (CRKP) strains untreated and treated with sub-lethal concentrations of imipenem were investigated via phenotype microarrays (PM). The gene expression and metabolism of the strain harboring blaNDM-1 before and after exposure to sub-lethal concentration of imipenem were further investigated by RNA-sequencing (RNA-Seq) and 1H NMR spectroscopy respectively. Most genes related to cell division, central carbon metabolism and nucleotide metabolism were downregulated after imipenem treatment. Similarly, 1H NMR spectra obtained from treated CRKP showed decrease in levels of bacterial end products (acetate, pyruvate, succinate, formate) and metabolites involved in nucleotide metabolism (uracil, xanthine, hypoxanthine) but elevated levels of glycerophosphocholine. The presence of anserine was also observed for the treated CRKP while FAPγ-adenine and methyladenine were only present in untreated bacterial cells. As a conclusion, the studied CRKP strain exhibited decrease in central carbon metabolism, cell division and nucleotide metabolism after exposure to sub-lethal concentrations of imipenem. The understanding of the complex biological system of this multidrug resistant bacterium may help in the development of novel strategies and potential targets for the management of the infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/physiology , Imipenem/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Bacterial Typing Techniques , Drug Resistance, Bacterial/genetics , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Phenotype
2.
Article in English | MEDLINE | ID: mdl-28074126

ABSTRACT

BACKGROUND: Carbapenem resistant Enterobacteriaceae is a growing concern worldwide including Malaysia. The emergence of this pathogen is worrying because carbapenem is one of the 'last-line' antibiotics. The main objective of this study was to determine the prevalence of genetic mechanisms and clinical risk factors of carbapenem resistant Klebsiella pneumoniae (K. pneumoniae) in Malaysia. METHODS: In this study, seventeen carbapenem resistant K. pneumoniae strains isolated from a tertiary teaching hospital in 2013 were studied. Minimal inhibitory concentration (MIC) of the bacterial strains was determined and genes associated with carbapenemases and extended-spectrum-beta-lactamases (ESBLs) were sequenced and compared with the closest representatives published in public domains. All strains were also sub-typed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Statistical analyses were performed to determine the correlation between risk factors for acquiring carbapenem resistant K. pneumoniae and in-hospital mortality. RESULTS: The predominant carbapenemase was blaOXA-48, detected in 12 strains (70.59%). Other carbapenemases detected in this study were blaKPC-2, blaIMP-8, blaNMC-A and blaNDM-1. Nine different pulsotypes were identified and nine strains which were affiliated with ST101, the predominant sequence type had similar PFGE patterns (similarity index of 85%). Based on univariate statistical analysis, resistance to imipenem and usage of mechanical ventilation showed a statistically significant effect separately to in-hospital mortality. CONCLUSION: The diverse genetic mechanisms harbored by these carbapenem resistant K. pneumoniae facilitates its spread and complicates its detection. Thus, correlation between microbiological trends with host characteristics and clinical factors will provide a better insight of rational treatment strategies and pathogen control.

SELECTION OF CITATIONS
SEARCH DETAIL