Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690765

ABSTRACT

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Subject(s)
Colloids , Environmental Restoration and Remediation , Groundwater , Groundwater/chemistry , Colloids/chemistry , Environmental Restoration and Remediation/methods , Polymers/chemistry , Charcoal/chemistry , Sand/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry
2.
J Environ Manage ; 360: 121130, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772232

ABSTRACT

Good site characterization is essential for the selection of remediation alternatives for impacted soils. The value of site characterization is critically dependent on the quality and quantity of the data collected. Current methods for characterizing impacted soils rely on expensive manual sample collection and off-site analysis. However, recent advances in terrestrial robotics and artificial intelligence offer a potentially revolutionary set of tools and methods that will help to autonomously explore natural environments, select sample locations with the highest value of information, extract samples, and analyze the data in real-time without exposing humans to potentially hazardous conditions. A fundamental challenge to realizing this potential is determining how to design an autonomous system for a given investigation with many, and often conflicting design criteria. This work presents a novel design methodology to navigate these criteria. Specifically, this methodology breaks the system into four components - sensing, sampling, mobility, and autonomy - and connects design variables to the investigation objectives and constraints. These connections are established for each component through a survey of existing technology, discussion of key technical challenges, and highlighting conditions where generality can promote multi-application deployment. An illustrative example of this design process is presented for the development and deployment of a robotic platform characterizing salt-impacted oil & gas reserve pits. After calibration, the relationship between the in situ robot chloride measurements and laboratory-based chloride measurements had a good linear relationship (R2-value = 0.861) and statistical significance (p-value = 0.003).

3.
Sci Data ; 11(1): 173, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321063

ABSTRACT

Predicting and elucidating the impacts of materials on human health and the environment is an unending task that has taken on special significance in the context of nanomaterials research over the last two decades. The properties of materials in environmental and physiological media are dynamic, reflecting the complex interactions between materials and these media. This dynamic behavior requires special consideration in the design of databases and data curation that allow for subsequent comparability and interrogation of the data from potentially diverse sources. We present two data processing methods that can be integrated into the experimental process to encourage pre-mediated interoperability of disparate material data: Knowledge Mapping and Instance Mapping. Originally developed as a framework for the NanoInformatics Knowledge Commons (NIKC) database, this architecture and associated methods can be used independently of the NIKC and applied across multiple subfields of nanotechnology and material science.

4.
Environ Sci Technol ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340051

ABSTRACT

Here, isotopically labeled 68ZnO NPs (ZnO NPs) and 68ZnO NPs with a thin 68Zn3(PO4)2 shell (ZnO_Ph NPs) were foliarly applied (40 µg Zn) to pepper plants (Capsicum annuum) to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn3(PO4)2 shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.6 mV) enabled a leaf uptake of 2.31 ± 0.34 µg of Zn, which is 2.7 times higher than the 0.86 ± 0.18 µg of Zn observed for ZnO NPs (26 ± 8 nm; 14.6 ± 0.4 mV). Further, ZnO_Ph NPs led to higher Zn mobility and phloem loading, while Zn from ZnO NPs was stored in the epidermal tissues, possibly through cell wall immobilization as a storage strategy. These differences led to higher translocation of Zn from the ZnO_Ph NPs within all plant compartments. ZnO_Ph NPs were also more persistent as NPs in the exposed leaf and in the plant stem over time. As a result, the treatment of ZnO_Ph NPs induced significantly higher Zn transport to the fruit than ZnO NPs. As determined by spICP-TOFMS, Zn in the fruit was not in the NP form. These results suggest that the Zn3(PO4)2 shell on ZnO NPs can help promote the transport of Zn to pepper fruits when foliarly applied. This work provides insight into the role of Zn3(PO4)2 on the surface of ZnO NPs in foliar uptake and in planta biodistribution for improving Zn delivery to edible plant parts and ultimately improving the Zn content in food for human consumption.

5.
Environ Sci Technol ; 58(6): 2798-2807, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294779

ABSTRACT

Solar photoexcitation of chromophoric groups in dissolved organic matter (DOM), when coupled to photoreduction of ubiquitous Fe(III)-oxide nanoparticles, can significantly accelerate DOM degradation in near-surface terrestrial systems, but the mechanisms of these reactions remain elusive. We examined the photolysis of chromophoric soil DOM coated onto hematite nanoplatelets featuring (001) exposed facets using a combination of molecular spectroscopies and density functional theory (DFT) computations. Reactive oxygen species (ROS) probed by electron paramagnetic resonance (EPR) spectroscopy revealed that both singlet oxygen and superoxide are the predominant ROS responsible for DOM degradation. DFT calculations confirmed that Fe(II) on the hematite (001) surface, created by interfacial electron transfer from photoexcited chromophores in DOM, can reduce dioxygen molecules to superoxide radicals (•O2-) through a one-electron transfer process. 1H nuclear magnetic resonance (NMR) and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) spectroscopies show that the association of DOM with hematite enhances the cleavage of aromatic groups during photodegradation. The findings point to a pivotal role for organic matter at the interface that guides specific ROS generation and the subsequent photodegradation process, as well as the prospect of using ROS signatures as a forensic tool to help interpret more complicated field-relevant systems.


Subject(s)
Dissolved Organic Matter , Ferric Compounds , Reactive Oxygen Species , Superoxides , Photolysis
6.
Small ; 20(7): e2304588, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37840413

ABSTRACT

Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose-coated quantum dots (sucQD) and biocompatible carbon dots with ß-cyclodextrin molecular baskets (suc-ß-CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc-ß-CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem-loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.


Subject(s)
Plants , Sucrose , Biological Transport , Plants/metabolism , Membrane Transport Proteins/metabolism , Agrochemicals , Plant Leaves
7.
Environ Sci Technol ; 57(51): 21917-21926, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091483

ABSTRACT

Co-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe0 and hydrophobic FeS2-Fe0 particles, respectively. X-ray absorption spectroscopy indicated the presence of realgar-like As-S and elemental As0 species at low and high As/Fe concentration ratios, respectively. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis identified As-containing particles both with and without Fe. The probability of finding As-containing particles without Fe increased with the S-induced hydrophobicity of SNZVI. The interactions of SNZVI materials with coexisting arsenite inhibited their reactivity with water (∼5.8-230.7-fold), trichloroethylene (∼3.6-67.5-fold), and florfenicol (∼1.1-5.9-fold). However, the overall selectivity toward trichloroethylene and florfenicol relative to water was improved (up to 9.0-fold) because the surface-associated As increased the SNZVI hydrophobicity. These results indicate that reactions of SNZVI with arsenite can remove As from groundwater and improve the properties of SNZVI for dehalogenation selectivity.


Subject(s)
Arsenic , Arsenites , Groundwater , Trichloroethylene , Water Pollutants, Chemical , Iron/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Water
9.
ACS Agric Sci Technol ; 3(11): 987-995, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38021209

ABSTRACT

The increasing severity of pathogenic and environmental stressors that negatively affect plant health has led to interest in developing next-generation agrochemical delivery systems capable of precisely transporting active agents to specific sites within plants. In this work, we adapt Flash NanoPrecipitation (FNP), a scalable nanocarrier (NC) formulation technology used in the pharmaceutical industry, to prepare organic core-shell NCs and study their efficacy as foliar or root delivery vehicles. NCs ranging in diameter from 55 to 200 nm, with surface zeta potentials from -40 to +40 mV, and with seven different shell material properties were prepared and studied. Shell materials included synthetic polymers poly(acrylic acid), poly(ethylene glycol), and poly(2-(dimethylamino)ethyl methacrylate), naturally occurring compounds fish gelatin and soybean lecithin, and semisynthetic hydroxypropyl methylcellulose acetate succinate (HPMCAS). NC cores contained a gadolinium tracer for tracking by mass spectrometry, a fluorescent dye for tracking by confocal microscopy, and model hydrophobic compounds (alpha tocopherol acetate and polystyrene) that could be replaced by agrochemical payloads in subsequent applications. After foliar application onto tomato plants with Silwet L-77 surfactant, internalization efficiencies of up to 85% and NC translocation efficiencies of up to 32% were observed. Significant NC trafficking to the stem and roots suggests a high degree of phloem loading for some of these formulations. Results were corroborated by confocal microscopy and synchrotron X-ray fluorescence mapping. NCs stabilized by cellulosic HPMCAS exhibited the highest degree of translocation, followed by formulations with a significant surface charge. The results from this work indicate that biocompatible materials like HPMCAS are promising agrochemical delivery vehicles in an industrially viable pharmaceutical nanoformulation process (FNP) and shed light on the optimal properties of organic NCs for efficient foliar uptake, translocation, and delivery.

10.
Sci Total Environ ; 902: 166409, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37597537

ABSTRACT

Deep subsurface stimulation processes often promote fluid-rock interactions that can lead to the formation of small colloidal particles that are suspected to migrate through the rock matrix, partially or fully clog pores and microfractures, and promote the mobilization of contaminants. Thus, the goal of this work is to understand the geochemical changes of the host rock in response to reservoir stimulation that promote the formation and migration of colloids. Two different carbonate-rich shales were exposed to different solution pHs (pH = 2 and 7). Iron and other mineral transformations at the shale-fluid interface were first characterized by synchrotron-based XRF mapping. Then, colloids that were able to migrate from the shale into the bulk fluid were characterized by synchrotron-based extended X-ray absorption structure (EXAFS), scanning electron microscopy (SEM), and single-particle inductively coupled plasma time-of-flight mass spectrometry (sp-icpTOF-MS). When exposed to the pH = 2 solution, extensive mineral dissolution and secondary precipitation was observed; iron-(oxyhydr)oxide colloids colocated with silicates were observed by SEM at the fluid-shale interfaces, and the mobilization of chromium and nickel with these iron colloids into the bulk fluid was detected by sp-icpTOF-MS. Iron EXAFS spectra of the solution at the shale-fluid interface suggests the rapid (within minutes) formation of ferrihydrite-like nanoparticles. Thus, we demonstrate that the pH neutralization promotes the mobilization of existing silicate minerals and the rapid formation of new iron colloids. These Fe colloids have the potential to migrate through the shale matrix and mobilize other heavy metals (such as Cr and Ni, in this study) and impacting groundwater quality, as well produced waters from these hydraulic fracturing operations.

11.
Environ Sci Technol ; 57(22): 8269-8279, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37227395

ABSTRACT

An incomplete understanding of how agrochemical nanocarrier properties affect their uptake and translocation in plants limits their application for promoting sustainable agriculture. Herein, we investigated how the nanocarrier aspect ratio and charge affect uptake and translocation in monocot wheat (Triticum aestivum) and dicot tomato (Solanum lycopersicum) after foliar application. Leaf uptake and distribution to plant organs were quantified for polymer nanocarriers with the same diameter (∼10 nm) but different aspect ratios (low (L), medium (M), and high (H), 10-300 nm long) and charges (-50 to +15 mV). In tomato, anionic nanocarrier translocation (20.7 ± 6.7 wt %) was higher than for cationic nanocarriers (13.3 ± 4.1 wt %). In wheat, only anionic nanocarriers were transported (8.7 ± 3.8 wt %). Both low and high aspect ratio polymers translocated in tomato, but the longest nanocarrier did not translocate in wheat, suggesting a phloem transport size cutoff. Differences in translocation correlated with leaf uptake and interactions with mesophyll cells. The positive charge decreases nanocarrier penetration through the leaf epidermis and promotes uptake into mesophyll cells, decreasing apoplastic transport and phloem loading. These results suggest design parameters to provide agrochemical nanocarriers with rapid and complete leaf uptake and an ability to target agrochemicals to specific plant organs, with the potential to lower agrochemical use and the associated environmental impacts.


Subject(s)
Agrochemicals , Polymers , Plant Leaves , Biological Transport , Triticum
12.
ACS Sustain Chem Eng ; 11(8): 3346-3358, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36874196

ABSTRACT

Anticipated increases in the frequency and intensity of extreme temperatures will damage crops. Methods that efficiently deliver stress-regulating agents to crops can mitigate these effects. Here, we describe high aspect ratio polymer bottlebrushes for temperature-controlled agent delivery in plants. The foliar-applied bottlebrush polymers had near complete uptake into the leaf and resided in both the apoplastic regions of the leaf mesophyll and in cells surrounding the vasculature. Elevated temperature enhanced the in vivo release of spermidine (a stress-regulating agent) from the bottlebrushes, promoting tomato plant (Solanum lycopersicum) photosynthesis under heat and light stress. The bottlebrushes continued to provide protection against heat stress for at least 15 days after foliar application, whereas free spermidine did not. About 30% of the ∼80 nm short and ∼300 nm long bottlebrushes entered the phloem and moved to other plant organs, enabling heat-activated release of plant protection agents in phloem. These results indicate the ability of the polymer bottlebrushes to release encapsulated stress relief agents when triggered by heat to provide long-term protection to plants and the potential to manage plant phloem pathogens. Overall, this temperature-responsive delivery platform provides a new tool for protecting plants against climate-induced damage and yield loss.

13.
Environ Sci Technol ; 57(10): 4167-4179, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36866930

ABSTRACT

Fe0 is a powerful chemical reductant with applications for remediation of chlorinated solvents, including tetrachloroethene and trichloroethene. Its utilization efficiency at contaminated sites is limited because most of the electrons from Fe0 are channeled to the reduction of water to H2 rather than to the reduction of the contaminants. Coupling Fe0 with H2-utilizing organohalide-respiring bacteria (i.e., Dehalococcoides mccartyi) could enhance trichloroethene conversion to ethene while maximizing Fe0 utilization efficiency. Columns packed with aquifer materials have been used to assess the efficacy of a treatment combining in space and time Fe0 and aD. mccartyi-containing culture (bioaugmentation). To date, most column studies documented only partial conversion of the solvents to chlorinated byproducts, calling into question the feasibility of Fe0 to promote complete microbial reductive dechlorination. In this study, we decoupled the application of Fe0 in space and time from the addition of organic substrates andD. mccartyi-containing cultures. We used a column containing soil and Fe0 (at 15 g L-1 in porewater) and fed it with groundwater as a proxy for an upstream Fe0 injection zone dominated by abiotic reactions and biostimulated/bioaugmented soil columns (Bio-columns) as proxies for downstream microbiological zones. Results showed that Bio-columns receiving reduced groundwater from the Fe0-column supported microbial reductive dechlorination, yielding up to 98% trichloroethene conversion to ethene. The microbial community in the Bio-columns established with Fe0-reduced groundwater also sustained trichloroethene reduction to ethene (up to 100%) when challenged with aerobic groundwater. This study supports a conceptual model where decoupling the application of Fe0 and biostimulation/bioaugmentation in space and/or time could augment microbial trichloroethene reductive dechlorination, particularly under oxic conditions.


Subject(s)
Chloroflexi , Trichloroethylene , Trichloroethylene/analysis , Soil , Biodegradation, Environmental , Solvents
14.
Environ Sci Process Impacts ; 25(3): 472-483, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36722905

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of highly fluorinated, anthropogenic compounds that are used in a wide variety of consumer applications. Due to their widespread use and high persistence, PFAS are ubiquitous in drinking water, which is of concern due to the threats these compounds pose to human health. Reduction via the hydrated electron is a promising technology for PFAS remediation and has been well-studied. However, since previous work rarely reports fluorine atom balances and often relies on suspect screening, some transformation products are likely unaccounted for. Therefore, we performed non-target analysis using high-resolution mass spectrometry on solutions of perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) that had been treated with UV/sulfite to produce hydrated electrons. We determined fluorine atom balances for all compounds studied, finding high fluorine atom balances for PFOS and PFBS. PFOA and GenX had lower overall fluorine atom balances, likely due to the production of volatile or very polar transformation products that were not measured by our methods. Transformation products identified by our analysis were consistent with literature, with a few exceptions. Namely, shorter-chain perfluorosulfonates (PFSA) and their H/F substituted counterparts were also detected from PFOS. This is an unexpected result based on literature, as no documented pathway exists for the formation of shorter-chain PFSA during UV/sulfite treatment. Furthermore, the nontarget approach we employed allowed for identification of novel, unsaturated products from the hydrated electron treatment of perfluorooctanesulfonate (PFOS) that warrant further investigation.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Humans , Fluorine , Fluorocarbons/analysis , Sulfites
15.
Environ Pollut ; 316(Pt 2): 120558, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36328285

ABSTRACT

Soil salinization resulting from anthropogenic activities affects soil health and productivity. Methods that can provide rapid, inexpensive, and accurate salinity characterization over vast areas of soil and waste materials will help in managing their impacts. The objective of this work was to evaluate the accuracy and precision of portable X-ray Fluorescence (pXRF) Cl- measurements of highly saline waste material (WMs) from oil and gas production sites. We compared pXRF Cl- measurements of three unconsolidated WMs to a standard laboratory method for determining soil salinity and identified the WM properties that most affect the precision and accuracy of the pXRF Cl- measurement. Despite covering a range of several orders of magnitude in chloride concentration, calibrated pXRF measurements varied by no more than 14% compared to standard laboratory Cl- measurements for dry homogenous samples. Measurements taken of WMs that were not homogenized decreased pXRF accuracy by 75% while moisture content decreased accuracy by 15%. Field measurements made at different areas inside an oil and gas WM pit were accurate within 60% of the standard laboratory Cl- measurements, despite the samples having a wide range of moisture content and particle size distributions. This study indicates that pXRF can be used to rapidly characterize soil salinity in-situ with acceptable accuracy and precision for screening purposes, opening the door for automated robotic measurements of chloride over large areas.


Subject(s)
Soil Pollutants , Soil Pollutants/analysis , Spectrometry, X-Ray Emission/methods , Chlorides , Environmental Monitoring/methods , X-Rays , Soil , Halogens
17.
Environ Sci Technol ; 56(22): 15584-15593, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36255450

ABSTRACT

Finding and quantifying engineered nanomaterials (ENMs) in soil are challenging because of the abundance of natural nanomaterials (NNMs) with the same elemental composition, for example, TiO2. Isotopically enriched ENMs may be distinguished from NNMs with the same elemental composition using single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) to measure multiple isotopes simultaneously within each ENM and NNM in soil, but the minimum isotope enrichment needed for detection of ENMs in soil is not known. Here, we determined the isotope enrichment needed for 47Ti-enriched TiO2 ENMs to be detectable in soil and assessed the effects of weathering on those requirements for less soluble TiO2 and more soluble CuO ENMs. The isotope-enriched ENMs were dosed into two different soils and were extracted and measured by spICP-TOF-MS after 1, 7, and 30 days. Isotope-enriched ENMs were recovered and detected for all three time points. The 47Ti-enriched TiO2 ENMs were detectable in Lufa 2.2 soil at a nominal dosed concentration of 10 mg-TiO2 kg-1 which is an environmentally relevant concentration in biosolid-amended soils. For distinguishing an ∼70 nm diameter TiO2 ENM from TiO2 NNMs in Lufa 2.2 soil, an ∼10 wt % 47Ti isotope-enrichment was required, and this enrichment requirement increases as the particle size decreases. This study is the first to evaluate the tracking ability of isotope-enriched ENMs at an individual particle level in soil and provides guidance on the isotope enrichment requirements for quantification of ENMs made from Earth-abundant elements in soils.


Subject(s)
Nanostructures , Soil , Soil/chemistry , Titanium , Mass Spectrometry
19.
ACS Nano ; 16(3): 4467-4478, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35179875

ABSTRACT

Plant abiotic stress induces reactive oxygen species (ROS) accumulation in leaves that can decrease photosynthetic performance and crop yield. Materials that scavenge ROS and simultaneously provide nutrients in vivo are needed to manage this stress. Here, we incorporated both ROS scavenging and ROS triggered agent release functionality into an ∼20 nm ROS responsive star polymer (RSP) poly(acrylic acid)-block-poly((2-(methylsulfinyl)ethyl acrylate)-co-(2-(methylthio)ethyl acrylate)) (PAA-b-P(MSEA-co-MTEA)) that alleviated plant stress by simultaneous ROS scavenging and nutrient agent release. Hyperspectral imaging indicates that all of the RSP penetrates through the tomato leaf epidermis, and 32.7% of the applied RSP associates with chloroplasts in mesophyll. RSP scavenged up to 10 µmol mg-1 ROS in vitro and suppressed ROS in vivo in stressed tomato (Solanum lycopersicum) leaves. Reaction of the RSP with H2O2in vitro enhanced the release of nutrient agent (Mg2+) from star polymers. Foliar applied RSP increased photosynthesis in plants under heat and light stress compared to untreated controls, enhancing the carbon assimilation, quantum yield of CO2 assimilation, Rubisco carboxylation rate, and photosystem II quantum yield. Mg loaded RSP improved photosynthesis in Mg deficient plants, mainly by promoting Rubisco activity. These results indicate the potential of ROS scavenging nanocarriers like RSP to alleviate abiotic stress in crop plants, allowing crop plants to be more resilient to heat stress, and potentially other climate change induced abiotic stressors.


Subject(s)
Polymers , Solanum lycopersicum , Hydrogen Peroxide , Photosynthesis , Plant Leaves , Reactive Oxygen Species , Ribulose-Bisphosphate Carboxylase
20.
Environ Sci Technol ; 56(5): 2990-3001, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35133134

ABSTRACT

Identifying engineered nanomaterials (ENMs) made from earth-abundant elements in soils is difficult because soil also contains natural nanomaterials (NNMs) containing similar elements. Here, machine learning models using elemental fingerprints and mass distributions of three TiO2 ENMs and Ti-based NNMs recovered from three natural soils measured by single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) was used to identify TiO2 ENMs in soil. Synthesized TiO2 ENMs were unassociated with other elements (>98%), while 40% of Ti-based ENM particles recovered from wastewater sludge had distinguishable elemental associations. All Ti-based NNMs extracted from soil had a similar chemical fingerprint despite the soils being from different regions, and >60% of Ti-containing NNMs had no measurable associated elements. A machine learning model best distinguished NNMs and ENMs when differences in Ti-mass distribution existed between them. A trained LR model could classify 100 nm TiO2 ENMs at concentrations of 150 mg kg-1 or greater. The presence of TiO2 ENMs in soil could be confirmed using this approach for most ENM-soil combinations, but the absence of a unique chemical fingerprint in a large fraction of both TiO2 ENMs and Ti-NNMs increases model uncertainty and hinders accurate quantification.


Subject(s)
Nanostructures , Soil , Machine Learning , Soil/chemistry , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...