Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(1): e0011369, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166129

ABSTRACT

Pyrethroid resistance in Aedes aegypti has become widespread after almost two decades of frequent applications to reduce the transmission of mosquito-borne diseases. Because few insecticide classes are available for public health use, insecticide resistance management (IRM) is proposed as a strategy to retain their use. A key hypothesis of IRM assumes that negative fitness is associated with resistance, and when insecticides are removed from use, susceptibility is restored. In Tapachula, Mexico, pyrethroids (PYRs) were used exclusively by dengue control programs for 15 years, thereby contributing to selection for high PYR resistance in mosquitoes and failure in dengue control. In 2013, PYRs were replaced by organophosphates-insecticides from a class with a different mode of action. To test the hypothesis that PYR resistance is reversed in the absence of PYRs, we monitored Ae. aegypti's PYR resistance from 2016 to 2021 in Tapachula. We observed significant declining rates in the lethal concentration 50 (LC50), for permethrin and deltamethrin. For each month following the discontinuation of PYR use by vector control programs, we observed increases in the odds of mosquitoes dying by 1.5% and 8.4% for permethrin and deltamethrin, respectively. Also, knockdown-resistance mutations (kdr) in the voltage-gated sodium channel explained the variation in the permethrin LC50s, whereas variation in the deltamethrin LC50s was only explained by time. This trend was rapidly offset by application of a mixture of neonicotinoid and PYRs by vector control programs. Our results suggest that IRM strategies can be used to reverse PYR resistance in Ae. aegypti; however, long-term commitment by operational and community programs will be required for success.


Subject(s)
Aedes , Dengue , Insecticides , Nitriles , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Permethrin , Aedes/genetics , Mexico , Longitudinal Studies , Mosquito Vectors/genetics , Mutation , Pyrethrins/pharmacology , Insecticide Resistance/genetics , Dengue/prevention & control
2.
PLoS Negl Trop Dis ; 16(11): e0010907, 2022 11.
Article in English | MEDLINE | ID: mdl-36374939

ABSTRACT

Among disease vectors, Aedes aegypti (L.) (Diptera: Culicidae) is one of the most insidious species in the world. The disease burden created by this species has dramatically increased in the past 50 years, and during this time countries have relied on pesticides for control and prevention of viruses borne by Ae. aegypti. The small number of available insecticides with different modes of action had led to increases in insecticide resistance, thus, strategies, like the "Incompatible Insect Technique" using Wolbachia's cytoplasmic incompatibility are desirable. We evaluated the effect of releases of Wolbachia infected Ae. aegypti males on populations of wild Ae. aegypti in the metropolitan area of Houston, TX. Releases were conducted by the company MosquitoMate, Inc. To estimate mosquito population reduction, we used a mosquito abundance Bayesian hierarchical estimator that accounted for inefficient trapping. MosquitoMate previously reported a reduction of 78% for an intervention conducted in Miami, FL. In this experiment we found a reduction of 93% with 95% credibility intervals of 86% and 96% after six weeks of continual releases. A similar result was reported by Verily Life Sciences, 96% [94%, 97%], in releases made in Fresno, CA.


Subject(s)
Aedes , Pest Control, Biological , Wolbachia , Animals , Male , Aedes/microbiology , Bayes Theorem , Mosquito Vectors , Texas
3.
Pathogens ; 10(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34959517

ABSTRACT

The United States experienced local transmission of West Nile Virus (WNV) for the first time in 1999, and Zika Virus (ZIKV) in 2016. These introductions captured the public's attention in varying degrees. The research presented here analyzes the disproportional perception of ZIKV risk compared to WNV transmission risk, by the public and vector control personnel. The risk perception of vector control was measured through purposive sampled interviews (24 interviews in 13 states; May 2020-June 2021), while the public's perception was estimated from news publications (January 2000-December 2020), and Google searches (January 2004-December 2020). Over time, we observed a decrease in the frequency of press reporting and Google searches of both viruses with decreasing annual peaks in the summer. The highest peak of ZIKV news, and searches, surpassed that of WNV. We observed clear differences in the contents of the headlines for both viruses. We propose that the main reason in risk perception differences between the viruses were psychological. Zika infections (mosquito-borne and sexually transmitted) can result in devastating symptoms in fetuses and newborns, observations that frequently appeared in ZIKV-related headlines. Our results highlight the likely influence the news media has on risk perception and the need for public health agencies to play active roles in the conversation, helping disseminate timely and accurate information. Understanding the factors that shape risk perceptions of vector-borne diseases will hopefully lead to better use of resources by providing better guidance.

4.
PLoS Negl Trop Dis ; 15(9): e0009746, 2021 09.
Article in English | MEDLINE | ID: mdl-34570792

ABSTRACT

BACKGROUND: Insecticide use continues as the main strategy to control Aedes aegypti, the vector of dengue, Zika, chikungunya, and yellow fever. In the city of Tapachula, Mexico, mosquito control programs switched from pyrethroids to organophosphates for outdoor spatial spraying in 2013. Additionally, the spraying scheme switched from total coverage to focused control, prioritizing areas with higher entomological-virological risk. Five years after this strategy had been implemented, we evaluated the status and variability of insecticide resistance among Ae. aegypti collected at 26 sites in Tapachula. METHODOLOGY/PRINCIPAL FINDINGS: We determined the lethal concentrations at 50% of the tested populations (LC50) using a bottle bioassay, and then, we calculated the resistance ratio (RR) relative to the susceptible New Orleans strain. Permethrin and deltamethrin (pyrethroids), chlorpyrifos and malathion (organophosphates), and bendiocarb (carbamate) were tested. The frequencies of the substitutions V1016I and F1534C, which are in the voltage-gated sodium channel and confer knockdown-resistance (kdr) to pyrethroid insecticides, were calculated. Despite 5 years having passed since the removal of pyrethroids from the control programs, Ae. aegypti remained highly resistant to permethrin and deltamethrin (RR > 10-fold). In addition, following 5 years of chlorpyrifos use, mosquitoes at 15 of 26 sites showed moderate resistance to chlorpyrifos (5- to 10-fold), and the mosquitoes from one site were highly resistant. All sites had low resistance to malathion (< 5-fold). Resistance to bendiocarb was low at 19 sites, moderate at five, and high at two. Frequencies of the V1016I ranged from 0.16-0.71, while C1534 approached fixation at 23 sites (0.8-1). Resistance profiles and kdr allele frequencies varied across Tapachula. The variability was not associated with a spatial pattern at the scale of the sampling. CONCLUSION/SIGNIFICANCE: Mosquito populations respond to selection pressure at a focal scale in the field. Spatial variation across sites highlights the importance of testing multiple sites within geographical regions.


Subject(s)
Aedes/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Aedes/genetics , Animal Distribution , Animals , Insecticides/classification , Mexico/epidemiology , Mosquito Control
5.
PLoS Genet ; 17(6): e1009606, 2021 06.
Article in English | MEDLINE | ID: mdl-34138859

ABSTRACT

Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site-the voltage-gated sodium channel (VGSC)-and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.


Subject(s)
Aedes/drug effects , Inactivation, Metabolic/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Permethrin/pharmacology , Voltage-Gated Sodium Channels/genetics , Aedes/genetics , Aedes/metabolism , Amino Acid Substitution , Animals , Gene Expression , Gene Expression Profiling , Insect Proteins/classification , Insect Proteins/metabolism , Insecticides/metabolism , Molecular Sequence Annotation , Mosquito Vectors , Mutation , Permethrin/metabolism , Phenotype , Polymorphism, Single Nucleotide , Voltage-Gated Sodium Channels/metabolism
6.
Sci Rep ; 8(1): 6747, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712956

ABSTRACT

Aedes aegypti is the primary urban mosquito vector of viruses causing dengue, Zika and chikungunya fevers -for which vaccines and effective pharmaceuticals are still lacking. Current strategies to suppress arbovirus outbreaks include removal of larval-breeding sites and insecticide treatment of larval and adult populations. Insecticidal control of Ae. aegypti is challenging, due to a recent rapid global increase in knockdown-resistance (kdr) to pyrethroid insecticides. Widespread, heavy use of pyrethroid space-sprays has created an immense selection pressure for kdr, which is primarily under the control of the voltage-gated sodium channel gene (vgsc). To date, eleven replacements in vgsc have been discovered, published and shown to be associated with pyrethroid resistance to varying degrees. In Mexico, F1,534C and V1,016I have co-evolved in the last 16 years across Ae. aegypti populations. Recently, a novel replacement V410L was identified in Brazil and its effect on vgsc was confirmed by electrophysiology. Herein, we screened V410L in 25 Ae. aegypti historical collections from Mexico, the first heterozygote appeared in 2002 and frequencies have increased in the last 16 years alongside V1,016I and F1,534C. Knowledge of the specific vgsc replacements and their interaction to confer resistance is essential to predict and to develop strategies for resistance management.


Subject(s)
Aedes/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Aedes/drug effects , Aedes/virology , Animals , Brazil/epidemiology , Chikungunya Fever/genetics , Chikungunya Fever/transmission , Chikungunya Fever/virology , Dengue/genetics , Dengue/transmission , Dengue/virology , Insecticides/adverse effects , Insecticides/pharmacology , Mexico , Mutation , Protein Domains/genetics , Pyrethrins/adverse effects , Zika Virus/genetics , Zika Virus/pathogenicity
7.
J Am Mosq Control Assoc ; 27(4): 357-62, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22329266

ABSTRACT

We analyzed 790 Aedes aegypti from 14 localities of Mexico in 2009 to update information on the frequency of the Ile1016 allele in the voltage-gated sodium channel gene that confers resistance to pyrethroids and DDT. The Ile1016 mutation was present in all 17 collections, and was close to fixation in Acapulco (frequency = 0.97), Iguala (0.93), and San Nicolas (0.90). Genotypes at the 1016 locus were not in Hardy-Weinberg proportions in collections from Panuco, Veracruz, Cosoleacaque, Coatzacoalcos, Tantoyuca, and Monterrey due in every case to an excess of homozygotes. The high frequencies of this mutation in Ae. aegypti are probably due to selection pressure from pyrethroid insecticides, particularly permethrin, which has been used in mosquito control programs for >10 years in Mexico.


Subject(s)
Aedes/genetics , Aedes/physiology , Gene Expression Regulation/physiology , Insect Proteins/metabolism , Ion Channel Gating/genetics , Sodium Channels/genetics , Animals , Demography , Genotype , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Mexico , Mutation , Pyrethrins/pharmacology , Sodium Channels/metabolism
8.
J Am Mosq Control Assoc ; 22(4): 672-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17304936

ABSTRACT

Potential insecticide-resistance mechanisms were studied with the use of biochemical assays in Aedes aegypti (L.) collected from 5 municipalities representing the north part of Quintana Roo: Benito Juarez, Cozumel, Isla Mujeres, Lazaro Cardenas, and Solidaridad. The activities of alpha and beta esterases, mixed-function oxidases (MFO), glutathione-S-transferase (GST), acethylcholinesterase (AChE), and insensitive acethylcholinesterase (iAChE) were assayed in microplates. Three replicates were performed for each enzyme and 60 males and 60 females were analyzed in each population. The New Orleans (NO) susceptible strain of Ae. aegypti was used as a susceptible reference and the threshold criteria for each enzyme were the highest NO absorbance values. In none of the 6 tests were absorbance values correlated in males and females. alpha esterases were elevated in Benito Juarez, Cozumel females and in Lazaro Cardenas males and females. beta esterases were elevated in Benito Juarez, Cozumel females and in Cozumel and Lazaro Cardenas males. Elevated esterases suggest potential insecticide-resistance mechanisms against organophosphate, carbamate, and some pyrethroid insecticides. Slightly elevated levels of MFOs appeared in Lazaro Cardenas females and in Cozumel, Isla Mujeres, and Solidaridad males. Mechanisms involving iAChE or GST were not apparent.


Subject(s)
Aedes/enzymology , Insect Vectors/enzymology , Insecticide Resistance/physiology , Acetylcholinesterase/metabolism , Animals , Esterases/metabolism , Female , Glutathione Transferase/metabolism , Male , Mexico , Mixed Function Oxygenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...