Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Foods ; 13(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063313

ABSTRACT

Honeydew honey is produced by bees (Apis mellifera) foraging and collecting secretions produced by certain types of aphids on various parts of plants. In addition to exhibiting organoleptic characteristics that distinguish them from nectar honey, these honeys are known for their functional properties, such as strong antioxidant and anti-inflammatory activities. Despite their importance, they remain poorly characterized in comparison with flower honeys, as most studies on this subject are not only carried out on too few samples but also still focused on traditional chemical-physical parameters, such as specific rotation, major sugars, or melissopalynological information. Since mass spectrometry has consistently been a primary tool for the characterization and authentication of honeys, this review will focus on the application of these methods to the characterization of the minor fraction of honeydew honey. More specifically, this review will attempt to highlight what progress has been made so far in identifying markers of the authenticity of the botanical and/or geographical origin of honeydew honeys by mass spectrometry-based approaches. Furthermore, strategies devoted to the determination of contaminants and toxins in honeydew honeys will be addressed. Such analyses represent a valuable tool for establishing the level of food safety associated with these products. A critical analysis of the presented studies will identify their limitations and critical issues, thereby describing the current state of research on the topic.

2.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790855

ABSTRACT

Olive oil is a food of great importance in the Mediterranean diet and culture. However, during its production, the olive oil industry generates a large amount of waste by-products that can be an important source of bioactive compounds, such as phenolic compounds and terpenes, revalorizing them in the context of the circular economy. Therefore, it is of great interest to study the distribution and abundance of these bioactive compounds in the different by-products. This research is a screening focused on phytochemical analysis, with particular emphasis on the identification and quantification of the phenolic and terpenic fractions. Both the main products of the olive industry (olives, olive paste and produced oil) and the by-products generated throughout the oil production process (leaf, "alpeorujo", liquid and solid residues generated during decanting commonly named "borras" and washing water) were analyzed. For this purpose, different optimized extraction procedures were performed for each matrix, followed by high-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF/MS) analysis. Although no phenolic alcohols were quantified in the leaf and the presence of secoiridoids was low, this by-product was notable for its flavonoid (720 ± 20 µg/g) and terpene (5000 ± 300 µg/g) contents. "Alpeorujo" presented a complete profile of compounds of interest, being abundant in phenolic alcohols (900 ± 100 µg/g), secoiridoids (4500 ± 500 µg/g) and terpenes (1200 ± 100 µg/g), among others. On the other hand, while the solid residue of the borras was the most abundant in phenolic alcohols (3700 ± 200 µg/g) and secoiridoids (680 ± 20 µg/g), the liquid fraction of this waste was notable for its content of elenolic acid derivatives (1700 ± 100 µg/mL) and phenolic alcohols (3000 ± 300 µg/mL). Furthermore, to our knowledge, this is the first time that the terpene content of this by-product has been monitored, demonstrating that it is an important source of these compounds, especially maslinic acid (120 ± 20 µg/g). Finally, the phytochemical content in wash water was lower than expected, and only elenolic acid derivatives were detected (6 ± 1 µg/mL). The results highlighted the potential of the olive by-products as possible alternative sources of a wide variety of olive bioactive compounds for their revalorization into value-added products.

3.
Foods ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611342

ABSTRACT

Lyophilized plant-origin extracts are rich in highly potent antioxidant polyphenols. In order to incorporate them into food products, it is necessary to protect these phytochemicals from atmospheric factors such as heat, light, moisture, or pH, and to enhance their bioavailability due to their low solubility. To address these challenges, recent studies have focused on the development of encapsulation techniques for antioxidant compounds within polymeric structures. In this study, lyophilized olive leaf extracts were microencapsulated with the aim of overcoming the aforementioned challenges. The method used for the preparation of the studied microparticles involves external ionic gelation carried out within a water-oil (W/O) emulsion at room temperature. HPLC analysis demonstrates a high content of polyphenols, with 90% of the bioactive compounds encapsulated. Meanwhile, quantification by inductively coupled plasma optical emission spectroscopy (ICP-OES) reveals that the dried leaves, lyophilized extract, and microencapsulated form contain satisfactory levels of macro- and micro-minerals (calcium, potassium, sodium). The microencapsulation technique could be a novel strategy to harness the polyphenols and minerals of olive leaves, thus enriching food products and leveraging the antioxidant properties of the polyphenolic compounds found in the lyophilized extract.

5.
Food Chem ; 434: 137325, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37696152

ABSTRACT

Encapsulation of quercetin (Q) with inulin (In) by spray-drying was performed applying a Box-Behnken design where the effect of the inlet air temperature, percentage of inulin crystallite dispersion and Q content were studied on the crystallinity index (CI). Three microparticle systems with CI between 2 % and 20 % (Q-In-2 %, Q-In-12 % and Q-In-20 %) were selected to study the CI effect on Q release during an in vitro digestion. The higher the CI of microparticles, the higher the encapsulation efficiency (76.4 %, Q-In-20 %). Surface quercetin was steadily released during the oral, gastric, and intestinal phases of the digestion. The CI of the microparticles did not influence the Q bioaccessibility values (23.1-29.7 %). The highest Q delivery occurred during the simulated colonic phase (44.4-66.4 %) due to the action of the inulinase. The controlled crystallization in spray-dried microparticles is a promising strategy for the designing of polyphenol-based microparticles with specific delivery properties.


Subject(s)
Inulin , Quercetin , Inulin/chemistry , Polyphenols , Temperature , Digestion
6.
Nutrients ; 15(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764662

ABSTRACT

The nature and composition of the waste produced by food industrial processing make its abundance and accumulation an environmental problem. Since these by-products may present a high potential for revalorization and may be used to obtain added-value compounds, the main goals of the technological advancements have been targeted at reducing the environmental impact and benefiting from the retrieval of active compounds with technological and health properties. Among the added-value substances, nondigestible carbohydrates have demonstrated promise. In addition to their well-known technological properties, they have been discovered to modify the gut microbiota and enhance immune function, including the stimulation of immune cells and the control of inflammatory reactions. Furthermore, the combination of these compounds with other substances such us phenols could improve their biological effect on different noncommunicable diseases through microbiota modulation. In order to gain insight into the implementation of this combined strategy, a broader focus concerning different aspects is needed. This review is focused on the optimized green and advanced extraction system applied to obtain added-value nondigestible carbohydrates, the combined administration with phenols and their beneficial effects on microbiota modulation intended for health and/or illness prevention, with particular emphasis on noncommunicable diseases. The isolation of nondigestible carbohydrates from by-products as well as in combination with other bioactive substances could provide an affordable and sustainable source of immunomodulatory chemicals.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Noncommunicable Diseases , Humans , Hexoses , Phenols
7.
Foods ; 12(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628030

ABSTRACT

The interest on the use of natural sources in the food industry has promoted the study of plants' phenolic compounds as potential additives. However, the literature has been focusing on essential oils, with very few studies published regarding aqueous extracts, their phenolic composition, and bioactivity. A systematic review was conducted on different databases following PRISMA guidelines to evaluate the relevance of the phenolic content of different aromatic spices (oregano, rosemary, thyme, ginger, clove, and pepper), as related to their bioactivity and potential application as food additives. Although different extraction methods have been applied in the literature, the use of green approaches using ethanol and deep eutectic solvents has increased, leading to the development of products more apt for human consumption. The studied plants present an interesting phenolic profile, ranging from phenolic acids to flavonoids, establishing a correlation between their phenolic content and bioactivity. In this sense, results have proven to be very promising, presenting those extracts as having similar if not higher bioactivity than synthetic additives already in use, with associated health concerns. Nevertheless, the study of spices' phenolic extracts is somehow limited to in vitro studies. Therefore, research in food matrices is needed for more understanding of factors interfering with their preservation activity.

8.
Plants (Basel) ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37447094

ABSTRACT

White willow (Salix alba) is a medicinal plant used in folk medicine. In this study, aqueous and ethanolic willow bark extracts were obtained via ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE), and analyzed regarding their phytochemical (total phenolics, phenolic acids, flavonoids, and tannins) content and in vitro biological properties (antibacterial and antifungal activity, acetylcholinesterase AChE inhibitory activity and anti-inflammatory effects). The highest phenolic, tannin, and flavonoid contents were found for willow bark extracts obtained via microwave-assisted extraction using ethanol as a solvent (SA-ME). The polyphenol load of all MAE and UAE extracts was higher when conventional solid-liquid extraction was applied (ρ < 0.05). The antioxidant capacities were stronger for microwave-assisted ethanolic extracts, with the lowest IC50 values of 12 µg/mL for DPPH• and a value of 16 µg/mL for ABTS•+, whereas the conventional extraction had the highest IC50 values (22 µg/mL and 28 µg/mL, respectively). Willow bark extract showed antibacterial activity against Gram-positive bacteria S. aureus and P. aeruginosa. AChE inhibitory activity was dependent on the extraction method and solvent used, and the highest inhibition among samples was observed for SA-ME. Taken altogether, our findings suggest that willow (Salix alba) bark extract obtained via ethanolic microwave-assisted extraction is a phytochemical-rich resource with in vitro, anti-inflammatory, and AchE inhibitory properties and, therefore, potential multiple medicinal end-uses.

9.
J Food Sci ; 88(7): 2968-2983, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37282735

ABSTRACT

For thousands of years, sodium chloride (NaCl) has been used as a preservative and flavor enhancer. In the organism, NaCl plays a role in nerve functions, osmotic pressure, and nutrient absorption. However, high consumption of NaCl could lead to health issues, such as hypertension and heart-related problems. For these reasons, potassium chloride (KCl) has been considered a salt substitute in foods, but KCl could be limited to food matrixes because of its unwanted bitterness and metallic aftertaste. As a result, the objective of this study was to analyze KCl-reduced-sodium roasted chicken in physical/technological characteristics, KCl-seasoning mixture, consumer perception, liking, emotions, and purchase intent (PI). An extreme vertice mixture design decided granulated garlic (74.09%), black pepper (9.95%), smoked paprika (14.47%), and KCl (1.39%) ratio of good seasoning-KCl mixture for roasted chicken based on sensory attributes used on the desirability function methodology. After optimizing the KCl-seasoning blend, NaCl/KCl replacement levels (0%, 25%, 50%, 75%, and 100%) were established and evaluated consumer perception, liking, emotions, and PI. Adding 25% and 50% of KCl showed no significant (p > 0.05) impact on the sensory attributes. Likewise, PI significantly (p < 0.05) increased when utilizing 25% and 50% of KCl after panelists received information about sodium health risks (SHR). Regarding emotional responses, unsafe and worried significantly (p < 0.05) decreased among the highest KCl replacement levels (75% and 100%) after panelists obtained the SHR. Overall liking, gender, age, salt user, and positive emotional responses (satisfied and pleased) were decisive predictors concerning PI among panelists.


Subject(s)
Sodium Chloride , Sodium , Animals , Chickens , Potassium Chloride , Emotions , Taste , Meat , Perception , Consumer Behavior
10.
Food Res Int ; 167: 112607, 2023 05.
Article in English | MEDLINE | ID: mdl-37087225

ABSTRACT

Probiotic bacteria and bioactive compounds obtained from plant origin stand out as ingredients with the potential to increase the healthiness of functional foods, as there is currently a recurrent search for them. Probiotics and bioactive compounds are sensitive to intrinsic and extrinsic factors in the processing and packaging of the finished product. In this sense, the present study aims to evaluate the co-encapsulation by spray dryer (inlet air temperature 120 °C, air flow 40 L / min, pressure of 0.6 MPa and 1.5 mm nozzle diameter) of probiotic bacteria (L.plantarum) and compounds extracted from red beet stems (betalains) in order to verify the interaction between both and achieve better viability and resistance of the encapsulated material. When studying the co-encapsulation of L.plantarum and betalains extracted from beet stems, an unexpected influence was observed with a decrease in probiotic viability in the highest concentration of extract (100 %), on the other hand, the concentration of 50 % was the best enabled and maintained the survival of L.plantarum in conditions of 25 °C (63.06 %), 8 °C (88.80 %) and -18 °C (89.28 %). The viability of the betalains and the probiotic was better preserved in storage at 8 and -18 °C, where the encapsulated stability for 120 days was successfully achieved. Thus, the polyfunctional formulation developed in this study proved to be promising, as it expands the possibilities of application and development of new foods.


Subject(s)
Beta vulgaris , Lactobacillus plantarum , Probiotics , Microbial Viability , Preservation, Biological
SELECTION OF CITATIONS
SEARCH DETAIL