Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(7): e0019224, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38842343

ABSTRACT

Uropathogenic Escherichia coli (UPEC) remains the main etiological agent of urinary tract infections affecting females and males. The draft genome sequence of three strains of UPEC isolated from senior citizens and pregnant women in the state of Puebla, Mexico, is reported here.

2.
Biosci Microbiota Food Health ; 43(1): 4-12, 2024.
Article in English | MEDLINE | ID: mdl-38188662

ABSTRACT

The World Health Organization (WHO) considers antimicrobial resistance to be one of the critical global public health priorities to address. Escherichia coli is a commensal bacterium of the gut microbiota in humans and animals; however, some strains cause infections and are resistant to antibiotics. One of the most common ways of acquiring pathogenic E. coli strains is through food. This review analyzes multidrug-resistant E. coli isolated from food, emphasizing Latin America and Mexico, and the mobile genetic elements (MGEs) responsible for spreading antibiotic resistance determinants among bacteria in different environments and hosts. We conducted a systematic search of the literature published from 2015 to 2022 in open access databases and electronic repositories. The prevalence of 11 E. coli pathotypes was described, with diarrheagenic E. coli pathotypes being the most frequently associated with foodborne illness in different Latin American countries, highlighting the presence of different antibiotic resistance genes mostly carried by IncF-type plasmids or class 1 integrons. Although the global incidence of foodborne illness is high, there have been few studies in Mexico and Latin America, which highlights the need to generate updated epidemiological data from the "One Health" approach, which allows monitoring of the multidrug-resistance phenomenon in E. coli from a common perspective in the interaction of human, veterinary, and environmental health.

3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958487

ABSTRACT

Enolase proteins play a significant role as moonlighting proteins. In their role as surface-associated enolase, they have multiple functions as they interact with extracellular matrix proteins. Type I and III collagens are the major constituents of this extracellular matrix, and collagen is one of the targets of interaction with the enolase of many pathogens, thereby helping the colonization process and promoting the subsequent invasion of the host. This work aimed to determine the participation of non-typeable H. influenzae enolase as a collagen-binding protein. In this study, through the use of in vitro tests it was demonstrated that recombinant enolase of non-typeable H. influenzae (rNTHiENO) strongly binds to type I collagen. Using molecular docking, the residues that could take part in the interaction of non-typeable H. influenzae enolase-type I collagen (NTHiENO-Cln I) and non-typeable H. influenzae enolase-type III collagen (NTHiENO-Cln III) were identified. However, in vitro assays show that NTHiENO has a better affinity to interact with Cln I, concerning type Cln III. The interaction of NTHiENO with collagen could play a significant role in the colonization process; this would allow H. influenzae to increase its virulence factors and strengthen its pathogenesis.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Humans , Phosphopyruvate Hydratase/genetics , Collagen Type I , Molecular Docking Simulation , Collagen/metabolism , Extracellular Matrix/metabolism
4.
Front Cell Infect Microbiol ; 13: 1237725, 2023.
Article in English | MEDLINE | ID: mdl-37876872

ABSTRACT

Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.


Subject(s)
Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Humans , Escherichia coli , Spinacia oleracea/genetics , Escherichia coli Infections/epidemiology , Extraintestinal Pathogenic Escherichia coli/genetics , Plasmids/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents
5.
Antibiotics (Basel) ; 12(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37237769

ABSTRACT

The Pseudomonas aeruginosa genome can change to adapt to different ecological niches. We compared four genomes from a Mexican hospital and 59 genomes from GenBank from different niches, such as urine, sputum, and environmental. The ST analysis showed that high-risk STs (ST235, ST773, and ST27) were present in the genomes of the three niches from GenBank, and the STs of Mexican genomes (ST167, ST2731, and ST549) differed from the GenBank genomes. Phylogenetic analysis showed that the genomes were clustering according to their ST and not their niche. When analyzing the genomic content, we observed that environmental genomes had genes involved in adapting to the environment not found in the clinics and that their mechanisms of resistance were mutations in antibiotic resistance-related genes. In contrast, clinical genomes from GenBank had resistance genes, in mobile/mobilizable genetic elements in the chromosome, except for the Mexican genomes that carried them mostly in plasmids. This was related to the presence of CRISPR-Cas and anti-CRISPR; however, Mexican strains only had plasmids and CRISPR-Cas. blaOXA-488 (a variant of blaOXA50) with higher activity against carbapenems was more prevalent in sputum genomes. The virulome analysis showed that exoS was most prevalent in the genomes of urinary samples and exoU and pldA in sputum samples. This study provides evidence regarding the genetic variability among P. aeruginosa isolated from different niches.

6.
Genes Genomics ; 45(5): 569-579, 2023 05.
Article in English | MEDLINE | ID: mdl-36635459

ABSTRACT

BACKGROUND: Leclercia adecarboxylata is a bacteria closely related to Escherichia coli according to its biochemical characteristics and is commonly considered non-pathogenic although a growing number of publications classify it as an emerging pathogen. Fosfomycin resistance is a common trait for L. adecarboxylata encoded by fosALA gene. OBJECTIVE: To analyze genomic traits of sixteen L. adecarboxylata strains isolated from blood culture and a bottle of total parenteral nutrition. METHODS: Twenty-eight L. adecarboxylata strains isolated from blood culture and a bottle of total parenteral nutrition were identified biochemically with a Vitek ® automated system. The strains were phenotyped by their growth on Eosin Methylene Blue agar or MacConkey agar plates. Additionally, Pulsed field gel electrophoresis (PFGE) was performed to establish the clonal relationship. The genomic DNA of sixteen strains was obtained using a Qubit ® dsDNA HS Assay Kit and sequenced on an Illumina ® MiSeq instrument. Draft genomes were assembled using PROKKA and Rast. Assemblies were submitted to Resfinder and PathogenFinder from the Center for Genomic Epidemiology in order to find resistance genes and pathogenic potential. IslandViewer4 was also used to find Pathogenicity and Phage Islands. For identification of the fosA gene, manual curation and Clustal analysis was performed. A novel FosA variant was identified. Finally, phylogenetic analysis was performed using VAMPhyRE software and Mega X. RESULTS: In this paper, we report the genomes of sixteen strains of Leclercia adecarboxylata causing an outbreak associated with parenteral nutrition in public hospitals in Mexico. The genomes were analyzed for genetic determinants of virulence and resistance. A high pathogenic potential (pathogenicity index 0.82) as well as multiple resistance genes including carbapenemics, colistin and efflux pumps were determined. Based on sequence analysis, a new variant of the fosALA gene was described. Finally, the outbreak was confirmed by establishing the clonal relationship among the sixteen genomes obtained. CONCLUSIONS: Commensal strains of L. adecarboxylata may acquire genetic determinants that provide mechanisms of host damage and go unnoticed in clinical diagnosis. L. adecarboxylata can evolve in a variety of ways including the acquisition of resistance and virulence genes representing a therapeutic challenge in patient care.


Subject(s)
Enterobacteriaceae Infections , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/complications , Phylogeny , Mexico/epidemiology , Agar/therapeutic use , Anti-Bacterial Agents , Escherichia coli , Genomics , Disease Outbreaks , Hospitals, Public
7.
Microorganisms ; 10(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36144465

ABSTRACT

blaIMP and blaVIM are the most detected plasmid-encoded carbapenemase genes in Pseudomonas aeruginosa. Previous studies have reported plasmid sequences carrying blaIMP variants, except blaIMP-56. In this study, we aimed to characterize a plasmid carrying blaIMP-56 in a P. aeruginosa strain isolated from a Mexican hospital. The whole genome of P. aeruginosa strain PE52 was sequenced using Illumina Miseq 2 × 150 bp, with 5 million paired-end reads. We characterized a 27 kb plasmid (pPE52IMP) that carried blaIMP-56. The phylogenetic analysis of RepA in pPE52IMP and 33 P. aeruginosa plasmids carrying resistance genes reported in the GenBank revealed that pPE52IMP and four plasmids (pMATVIM-7, unnamed (FDAARGOS_570), pD5170990, and pMRVIM0713) were in the same clade. These closely related plasmids belonged to the MOBP11 subfamily and had similar backbones. Another plasmid (p4130-KPC) had a similar backbone to pPE52IMP; however, its RepA was truncated. In these plasmids, the resistance genes blaKPC-2, blaVIM variants, aac(6')-Ib4, blaOXA variants, and blaIMP-56 were inserted between phd and resolvase genes. This study describes a new family of plasmids carrying resistance genes, with a similar backbone, the same RepA, and belonging to the MOBP11 subfamily in P. aeruginosa. In addition, our characterized plasmid harboring blaIMP-56 (pPE52IMP) belongs to this family.

8.
Plasmid ; 123-124: 102650, 2022.
Article in English | MEDLINE | ID: mdl-36130651

ABSTRACT

The link between E. coli strains contaminating foods and human disease is unclear, with some reports supporting a direct transmission of pathogenic strains via food and others highlighting their role as reservoirs for resistance and virulence genes. Here we take a genomics approach, analyzing a large set of fully-assembled genomic sequences from E. coli available in GenBank. Most of the strains isolated in food are more closely related to each other than to clinical strains, arguing against a frequent direct transmission of pathogenic strains from food to the clinic. We also provide strong evidence of genetic exchanges between food and clinical strains that are facilitated by plasmids. This is based on an overlapped representation of virulence and resistance genes in plasmids isolated from these two sources. We identify clusters of phylogenetically-related plasmids that are largely responsible for the observed overlap and see evidence of specialization, with some food plasmid clusters preferentially transferring virulence factors over resistance genes. Consistent with these observations, food plasmids have a high mobilization potential based on their plasmid taxonomic unit classification and on an analysis of mobilization gene content. We report antibiotic resistance genes of high clinical relevance and their specific incompatibility group associations. Finally, we also report a striking enrichment for adhesins in food plasmids and their association with specific IncF replicon subtypes. The identification of food plasmids with specific markers (Inc and PTU combinations) as mediators of horizontal transfer between food and clinical strains opens new research avenues and should assist with the design of surveillance strategies.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Plasmids/genetics , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Drug Resistance, Microbial/genetics , Genomics , Gene Transfer, Horizontal
9.
J Infect Dev Ctries ; 16(3): 500-506, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35404856

ABSTRACT

INTRODUCTION: The emergence of extended-spectrum ß-lactamases (ESBLs)-producing Escherichia coli clones are a public health concern worldwide. Scarce information does exist about the spread of ESBLs-producing E. coli in pediatric patients from developing countries. METHODOLOGY: E. coli strains were analyzed by multilocus-sequence-typing, pulsed-field-gel-electrophoresis and phylogenetic group. The antimicrobial-resistance genes were detected by PCR, and plasmid content by the PCR-based replicon-typing. Horizontal transfer was tested by conjugation and the location of the blaCTX-M-15 gene by Southern blot hybridization. RESULTS: Thirty-two cefotaxime-resistant E. coli were recovered. Eleven of them were ESBL-producing isolates, which were well characterized and ascribed to seven sequence types and five phylogroups. The ESBL CTX-M-15 was the most prevalent enzyme (9 of 11). Plasmids of variable sizes (40-220 kb) were visualized, and the incompatibility (Inc) group FIB plasmid-replicon was detected in the ESBL strains and transferred by conjugation in 45.45% of them. Plasmid-borne toxin-antitoxin systems were the most frequently detected systems, strongly associated to IncF plasmids. The CTX-M-15-encoding gene was located on IncFIB plasmids. CONCLUSIONS: Even though a small number of ESBL-producing strains was recovered, we evidenced that IncFIB plasmids carry the blaCTX-M-15 gene, highlighting the role of IncF-type plasmids in facilitating the spread and maintenance of ESBL-encoding genes, which further favors the rapid increase of the antimicrobial resistance dissemination in disease-causing E. coli strains in pediatric patients.


Subject(s)
Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/pharmacology , Child , Clone Cells , Humans , Phylogeny , Plasmids/genetics , beta-Lactamases/genetics
10.
Pathogens ; 10(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34959569

ABSTRACT

Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO-plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.

11.
J Immunol Res ; 2021: 6629824, 2021.
Article in English | MEDLINE | ID: mdl-34222496

ABSTRACT

Haemophilus influenzae is a common organism of the human upper respiratory tract; this bacterium is responsible of a wide spectrum for respiratory infections and can generate invasive diseases such as meningitis and septicemia. These infections are associated with H. influenzae encapsulated serotype b. However, the incidence of invasive disease caused by nontypeable H. influenzae (NTHi) has increased in the post-H. influenzae serotype b (Hib) vaccine era. Currently, an effective vaccine against NTHi is not available; due to this, it is important to find an antigen capable to confer protection against NTHi infection. In this study, 10 linear B cell epitopes and 13 CTL epitopes and a putative plasminogen-binding motif (252FYNKENGMY260) and the presence of enolase on the surface of different strains of H. influenzae were identified in the enolase sequence of H. influenzae. Both in silico and experimental results showed that recombinant enolase from H. influenzae is immunogenic that could induce a humoral immune response; this was observed mediating the generation of specific polyclonal antibodies anti-rNTHiENO that recognize typeable and nontypeable H. influenzae strains. The immunogenic properties and the superficial localization of enolase in H. influenzae, important characteristics to be considered as a new candidate for the development of a vaccine, were demonstrated.


Subject(s)
Bacterial Proteins/immunology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/immunology , Haemophilus influenzae/immunology , Phosphopyruvate Hydratase/immunology , Respiratory Tract Infections/prevention & control , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cloning, Molecular , Computational Biology , Epitopes/genetics , Epitopes/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus Vaccines/genetics , Haemophilus Vaccines/therapeutic use , Haemophilus influenzae/enzymology , Haemophilus influenzae/genetics , Humans , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Vaccine Development , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use
12.
APMIS ; 129(4): 213-224, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33471435

ABSTRACT

Multidrug-resistant Pseudomonas aeruginosa is one of the main opportunistic pathogens causing severe infection. One of the mechanisms involved in the resistance to imipenem in clinical isolates is the loss of the OprD porin. Changes like substitutions, deletions, insertions, or mutations in the oprD gene can modify the conformation of OprD porin or inhibit its presence and generate resistance to carbapenems. The aim of this work was to obtain anti-OprD polyclonal antibodies and to determine by both immunofluorescence microscopy (IFI) and Western blot assays, the presence of the OprD porin in resistant-carbapenem P. aeruginosa strains with different changes in the oprD gene. Changes in the gene oprD were identified in clinical isolates of P. aeruginosa. When proteins were translated, several polymorphisms were found; however, these did not affect the presence of OprD porin (PCM25, PCM36, and PCM78). Also it was detected an insertion sequence ISPa1328 (PCM52) and a premature stop codon (PCM91), which inhibited the presence of the OprD porin. This study shows how changes in the oprD gene of P. aeruginosa clinical isolates affect the presence of the OprD porin detected by Western blot and indirect immunofluorescence assays using specific polyclonal anti-OprD antibodies generated in this work.


Subject(s)
Drug Resistance, Microbial/physiology , Porins/genetics , Porins/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Animals , Drug Resistance, Multiple/physiology , Humans , Rabbits
13.
J Glob Antimicrob Resist ; 23: 120-129, 2020 12.
Article in English | MEDLINE | ID: mdl-32916332

ABSTRACT

OBJECTIVES: The aim of this study was to identify Acinetobacter spp. strains from paediatric patients, to determine their genetic relationship, to detect antibiotic resistance genes and to evaluate the role of efflux pumps in antibiotic resistance. METHODS: A total of 54 non-duplicate, non-consecutive Acinetobacter spp. isolates were collected from paediatric patients. Their genetic relationship, antibiotic resistance profile, efflux pump activity, antibiotic resistance genes and plasmid profile were determined. RESULTS: The isolates were identified as 24 Acinetobacter haemolyticus, 24 Acinetobacter calcoaceticus-baumannii (Acb) complex and 1 strain each of Acinetobacter junii, Acinetobacter radioresistens, Acinetobacter indicus, Acinetobacter lwoffii, Acinetobacter ursingii and Acinetobacter venetianus. The 24 A. haemolyticus were considered genetically unrelated. One strain was resistant to carbapenems, two to cephalosporins, two to ciprofloxacin and sixteen to aminoglycosides. The antibiotic resistance genes blaOXA-214 (29%), blaOXA-215 (4%), blaOXA-264 (8%), blaOXA-265 (29%), blaNDM-1 (4%), aac(6')-Ig (38%) and the novel variants blaOXA-575 (13%), blaTEM-229 (75%), aac(6')-Iga (4%), aac(6')-Igb (13%) and aac(6')-Igc (42%) were detected. Among 24 Acb complex, 5 were multidrug-resistant, carbapenem-resistant strains carrying blaOXA-51 and blaOXA-23; they were genetically related and had the same plasmid profile. Other species were susceptible. In some strains of A. haemolyticus and Acb complex, the role of RND efflux pumps was evidenced by a decrease in the MICs for cefotaxime, amikacin and ciprofloxacin in the presence of an efflux pump inhibitor. CONCLUSIONS: This study identified isolates of A. haemolyticus carrying new ß-lactamase variants and shows for the first time the contribution of efflux pumps to antibiotic resistance in this species.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter , Child , Hospitals, Pediatric , Humans , Mexico
14.
Front Microbiol ; 11: 926, 2020.
Article in English | MEDLINE | ID: mdl-32670207

ABSTRACT

Acinetobacter haemolyticus is a Gammaproteobacterium that has been involved in serious diseases frequently linked to the nosocomial environment. Most of the strains causing such infections are sensitive to a wide variety of antibiotics, but recent reports indicate that this pathogen is acquiring very efficiently carbapenem-resistance determinants like the blaNDM-1 gene, all over the world. With this work we contribute with a collection set of 31 newly sequenced nosocomial A. haemolyticus isolates. Genome analysis of these sequences and others collected from RefSeq indicates that their chromosomes are organized in 12 syntenic blocks that contain most of the core genome genes. These blocks are separated by hypervariable regions that are rich in unique gene families, but also have signals of horizontal gene transfer. Genes involved in virulence or encoding different secretion systems are located inside syntenic regions and have recombination signals. The relative order of the synthetic blocks along the A. haemolyticus chromosome can change, indicating that they have been subject to several kinds of inversions. Genomes of this microorganism show large differences in gene content even if they are in the same clade. Here we also show that A. haemolyticus has an open pan-genome.

15.
Infect Drug Resist ; 13: 295-310, 2020.
Article in English | MEDLINE | ID: mdl-32099421

ABSTRACT

BACKGROUND/PURPOSE: Uropathogenic E. coli (UPEC) is the main cause of urinary tract infection (UTI) and it is known that pregnant women have a higher risk for UTI. UPEC has a variety of virulence and antibiotic resistance factors that facilitate its pathogenic success and it is crucial to know which are the susceptibility patterns, Extended-Spectrum-ß-Lactamase (ESBL) production, virulence genes, pathogenicity islands (PAI), phylogenetic groups and serotypes among strains isolated from pregnant and non-pregnant women. METHODS: One hundred fifty UPEC strains were isolated from pregnant and non-pregnant women from two different Mexican states (Sonora and Puebla). Strains were analyzed using the Kirby-Bauer method for the determination of antibiotic susceptibility and ESBL. Virulence genes, PAIs and phylogenetic groups were determined using a multiplex PCR. Strains were serotyped by an agglutination assay. Blood agar and CAS agar were used for phenotypic assays. RESULTS: 92.7% of UPEC strains showed multidrug-resistant (MDR), 6.7% extremely-resistant (XDR) and 0.6% pandrug-resistant (PDR). The highest resistance was determined to be for ß-lactam antibiotics (>72% in both states) and 44.5% of the UPEC strains were ESBL+. The predominant virulence genes found were fimH (100%), iucD (85%) and iha (60%). The strains isolated from pregnant women from Puebla presented a large percentage of genes associated with upper urinary tract infections. PAIs were found in 51% and 68% of the strains from Sonora and Puebla, respectively. All the strains were siderophores producers and 41.5% produced hemolysis. The serotypes found were diverse and belonged to phylogroups A, B2 and C. CONCLUSION: The UPEC strains from this study are MDR with tendency to XDR or PDR, they can cause upper UTIs and are serotypically and phylogenetically diverse, which supports the need to develop new strategies for UTI treatment in pregnant and non-pregnant Mexican women.

16.
Genomics ; 112(2): 1813-1820, 2020 03.
Article in English | MEDLINE | ID: mdl-31689478

ABSTRACT

There is increased evidence demonstrating the association between Crohn's Disease (CD), a type of Inflammatory Bowel Disease (IBD), and non-diarrheagenic Adherent/Invasive Escherichia coli (AIEC) isolates. AIEC strains are phenotypically characterized by their adhesion, invasion and intra-macrophage survival capabilities. In the present study, the genomes of five AIEC strains isolated from individuals without IBD (four from healthy donors and one from peritoneal liquid) were sequenced and compared with AIEC prototype strains (LF82 and NRG857c), and with extra-intestinal uropathogenic strain (UPEC CFT073). Non-IBD-AIEC strains showed an Average Nucleotide Identity up to 98% compared with control strains. Blast identities of the five non-IBD-AIEC strains were higher when compared to AIEC and UPEC reference strains than with another E. coli pathotypes, suggesting a relationship between them. The SNPs phylogeny grouped the five non-IBD-AIEC strains in one separated cluster, which indicates the emergence of these strains apart from the AIEC group. Additionally, four genomic islands not previously reported in AIEC strains were identified. An incomplete Type VI secretion system was found in non-IBD-AIEC strains; however, the Type II secretion system was complete. Several groups of genes reported in AIEC strains were searched in the five non-IBD-AIEC strains, and the presence of fimA, fliC, fuhD, chuA, irp2 and cvaC were confirmed. Other virulence factors were detected in non-IBD-AIEC strains, which were absent in AIEC reference strains, including EhaG, non-fimbrial adhesin 1, PapG, F17D-G, YehA/D, FeuC, IucD, CbtA, VgrG-1, Cnf1 and HlyE. Based on the differences in virulence determinants and SNPs, it is plausible to suggest that non-IBD AIEC strains belong to a different pathotype.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , Phylogeny , Bacterial Adhesion , Drug Resistance, Bacterial , Escherichia coli/classification , Escherichia coli/pathogenicity , Feces/microbiology , Genomic Islands , Healthy Volunteers , Humans , Polymorphism, Single Nucleotide , Virulence Factors/genetics
17.
Microb Drug Resist ; 25(7): 1023-1031, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31335270

ABSTRACT

Acinetobacter calcoaceticus-baumannii complex isolates have been frequently associated with hospital and community infections, with A. baumannii being the most common. Other Acinetobacter spp. not belonging to this complex also cause infections in hospital settings, and the incidence has increased over the past few years. Some species of the Acinetobacter genus possess a great diversity of antibiotic resistance mechanisms, such as efflux pumps, porins, and resistance genes that can be acquired and disseminated by mobilizable genetic elements. By means of whole-genome sequencing, we describe in the clinical Acinetobacter haemolyticus strain AN54 different mechanisms of resistance that involve blaOXA-265, blaNDM-1, aphA6, aac(6')-Ig, and a resistance-nodulation-cell division-type efflux pump. This strain carries six plasmids, of which the plasmid pAhaeAN54e contains blaNDM-1 in a Tn125-like transposon that is truncated at the 3' end. This strain also has an insertion sequence IS91 and seven genes encoding hypothetical proteins. The pAhaeAN54e plasmid is nontypable and different from other plasmids carrying blaNDM-1 that have been reported in Mexico and other countries. The presence of these kinds of plasmids in an opportunistic pathogen such as A. haemolyticus highlights the role that these plasmids play in the dissemination of antibiotic resistance genes, especially against carbapenems, in Mexican hospitals.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter/genetics , Drug Resistance, Bacterial/genetics , Plasmids/genetics , beta-Lactamases/genetics , Acinetobacter/drug effects , Acinetobacter Infections/drug therapy , Animals , Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Child , DNA Transposable Elements/genetics , Drug Resistance, Bacterial/drug effects , Humans , Male , Mexico , Microbial Sensitivity Tests/methods , Whole Genome Sequencing/methods
18.
Ann Clin Microbiol Antimicrob ; 17(1): 42, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30526606

ABSTRACT

BACKGROUND: The widespread Escherichia coli clone ST131 implicated in multidrug-resistant infections has been recently reported, the majority belonging to O25:H4 serotype and classified into five main virotypes in accordance with the virulence genes carried. METHODS: Pathogenicity Islands I and II (PAI-I and PAI-II) were determined using conventional PCR protocols from a set of four E. coli CTXR ST131 O25:H4/H30-Rx strains collected from healthy donors' stool. The virulence genes patterns were also analyzed and compared them with the virotypes reported previously; then adherence, invasion, macrophage survival and biofilm formation assays were evaluated and AIEC pathotype genetic determinants were investigated. FINDINGS: Non-reported virulence patterns were found in our isolates, two of them carried satA, papA, papGII genes and the two-remaining isolates carried cnfI, iroN, satA, papA, papGII genes, and none of them belonged to classical ST131 virotypes, suggesting an endemic distribution of virulence genes and two new virotypes. The presence of PAI-I and PAI-II of Uropathogenic E. coli was determined in three of the four strains, furthermore adherence and invasion assays demonstrated higher degrees of attachment/invasion compared with the control strains. We also amplified intI1, insA and insB genes in all four samples. INTERPRETATION: The results indicate that these strains own non-reported virotypes suggesting endemic distribution of virulence genes, our four strains also belong to an AIEC pathotype, being this the first report of AIEC in México and the association of AIEC with healthy donors.


Subject(s)
Bacterial Adhesion , Uropathogenic Escherichia coli/physiology , Uropathogenic Escherichia coli/pathogenicity , Asymptomatic Diseases , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Feces/microbiology , Humans , Serogroup , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/isolation & purification , Virulence
19.
Infect Drug Resist ; 11: 1523-1536, 2018.
Article in English | MEDLINE | ID: mdl-30288063

ABSTRACT

PURPOSE: Pseudomonas aeruginosa infections in hospitals constitute an important problem due to the increasing multidrug resistance (MDR) and carbapenems resistance. The knowledge of resistance mechanisms in Pseudomonas strains is an important issue for an adequate antimicrobial treatment. Therefore, the objective was to investigate other antimicrobial resistance mechanisms in MDR P. aeruginosa strains carrying bla IMP, make a partial plasmids characterization, and determine if modifications in oprD gene affect the expression of the OprD protein. METHODOLOGY: Susceptibility testing was performed by Kirby Baüer and by Minimum Inhibitory Concentration (presence/absence of efflux pump inhibitor); molecular typing by Pulsed-field gel electrophoresis (PFGE), resistance genotyping and integrons by PCR and sequencing; OprD expression by Western blot; plasmid characterization by MOB Typing Technique, molecular size by PFGE-S1; and bla IMP location by Southern blot. RESULTS: Among the 59 studied P. aeruginosa isolates, 41 multidrug resistance and carbapenems resistance isolates were detected and classified in 38 different PFGE patterns. Thirteen strains carried bla IMP; 16 bla GES and four carried both genes. This study centered on the 17 strains har-boring bla IMP. New variants of ß-lactamases were identified (bla GES-32, bla IMP-56, bla IMP-62) inside of new arrangements of class 1 integrons. The presence of bla IMP gene was detected in two plasmids in the same strain. The participation of the OprD protein and efflux pumps in the resistance to carbapenems and quinolones is shown. No expression of the porin OprD due to stop codon or IS in the gene was found. CONCLUSIONS: This study shows the participation of different resistance mechanisms, which are reflected in the levels of MIC to carbapenems. This is the first report of the presence of three new variants of ß-lactamases inside of new arrangements of class 1 integrons, as well as the presence of two plasmids carrying bla IMP in the same P. aeruginosa strain isolated in a Mexican hospital.

20.
Indian J Microbiol ; 58(4): 525-528, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30262964

ABSTRACT

Ninety-six methicillin-susceptible Staphylococcus aureus (MSSA) and 11 methicillin-resistant coagulase-negative staphylococci (MRCNS) were recovered from food of animal origin. Multi-drug resistance was detected in 34.1% of isolates. Tetracycline-resistant staphylococci harbored tetK gene (68.8%). Erythromycin/clindamycin-resistant staphylococci carried lnuA/lnuB genes frequently alone or combined with msrA gene. The sec gene was detected in 15.6% of MSSA and two isolates harbored the immune evasion cluster. The spa t337 predominated among MSSA strains. Two ermC-positive MRCNS isolates were observed, five mecA-positive carried SCCmec IVa and 6 were non-typeable by the IWG-SCC classification. These results demonstrate that food of animal origin can be a potential source for spreading of multidrug-resistance gene.

SELECTION OF CITATIONS
SEARCH DETAIL