Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(16): 9490-9504, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35971611

ABSTRACT

Protein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, ß and γ subunits that specifically associate into a heterotrimeric form eEF1B(αßγ)3. As both the eEF1Bα and eEF1Bß proteins have structurally conserved GEF domains, their total number within the complex is equal to six. Such, so far, unique structural assembly of the guanine-nucleotide exchange factors within a stable complex may be considered as a 'GEF hub' that ensures efficient maintenance of the translationally active GTP-bound conformation of eEF1A in higher eukaryotes.


Subject(s)
Guanine Nucleotide Exchange Factors , Peptide Elongation Factor 1 , Humans , Peptide Elongation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Protein Biosynthesis , Nucleotides/metabolism , Guanine
2.
Int J Biol Macromol ; 126: 899-907, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30590147

ABSTRACT

Translation elongation factor 1Bß (eEF1Bß) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bß ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bß catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex. Here we show that the N-terminal domain comprising initial 77 amino acids of eEF1Bß, eEF1Bß(1-77), is a monomer in solution with increased hydrodynamic volume. This domain binds eEF1Bγ in equimolar ratio. The CD spectra reveal that the secondary structure of eEF1Bß(1-77) consists predominantly of α-helices and a portion of disordered region. Very rapid hydrogen/deuterium exchange for all eEF1Bß(1-77) peptides favors a flexible tertiary organization of eEF1Bß(1-77). Computational modeling of eEF1Bß(1-77) suggests several conformation states each composed of three α-helices connected by flexible linkers. Altogether, the data imply that the protein-binding domain of eEF1Bß shows flexible spatial organization which may be needed for interaction with eEF1Bγ or other protein partners.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/isolation & purification , Humans , Models, Molecular , Peptide Elongation Factor 1/isolation & purification , Peptides/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Recombinant Proteins/isolation & purification , Reproducibility of Results , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL