Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 20(3): 2058-2071, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215053

ABSTRACT

INTRODUCTION: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. METHODS: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. RESULTS: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. DISCUSSION: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. HIGHLIGHTS: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.


Subject(s)
Alzheimer Disease , North American People , Humans , Alzheimer Disease/genetics , Pilot Projects , Asian/genetics , Canada , Risk Factors
2.
Theranostics ; 14(2): 892-910, 2024.
Article in English | MEDLINE | ID: mdl-38169544

ABSTRACT

Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms underlying these phenomena remain poorly understood. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors (TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of TAMs and tumor-infiltrating T cells. Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more attributed to M2 polarization than the recruitment of the TAMs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Hepatitis B virus , Liver Neoplasms/pathology , Macrophages/metabolism , Coculture Techniques , Cell Line, Tumor , Tumor Microenvironment
3.
Sci Data ; 9(1): 727, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435936

ABSTRACT

Seroprevalence studies provide useful information about the proportion of the population either vaccinated against SARS-CoV-2, previously infected with the virus, or both. Numerous studies have been conducted in the United States, but differ substantially by dates of enrollment, target population, geographic location, age distribution, and assays used. This can make it challenging to identify and synthesize available seroprevalence data by geographic region or to compare infection-induced versus combined infection- and vaccination-induced seroprevalence. To facilitate public access and understanding, the National Institutes of Health and the Centers for Disease Control and Prevention developed the COVID-19 Seroprevalence Studies Hub (COVID-19 SeroHub, https://covid19serohub.nih.gov/ ), a data repository in which seroprevalence studies are systematically identified, extracted using a standard format, and summarized through an interactive interface. Within COVID-19 SeroHub, users can explore and download data from 178 studies as of September 1, 2022. Tools allow users to filter results and visualize trends over time, geography, population, age, and antigen target. Because COVID-19 remains an ongoing pandemic, we will continue to identify and include future studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Seroepidemiologic Studies , Humans , United States , Vaccination
4.
Arch Virol ; 167(12): 2839-2843, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36227426

ABSTRACT

Ophiostoma bicolor is a pathogenic fungus associated with bark beetles that can cause serious damage to host plants. In this study, a novel fungal virus, "Ophiostoma bicolor endornavirus 1" (ObEV1), was obtained from O. bicolor, and its complete genome sequence was determined. ObEV1 has a single-stranded positive-sense (+ ss) RNA genome of 10,119 nucleotides. Sequence annotation and comparison showed that the viral genome has a single large open reading frame (ORF) encoding a polyprotein of 362.48 kDa. The polyprotein contains seven conserved domains: RNA-dependent RNA polymerase (RdRp), viral RNA helicase 1 (VHel1), viral methyltransferase (VMet), DEAD-like helicase (DEXDc), gliding-GltJ (G1), large tegument protein UL36 (PHA), and YlqF-related-GTPase (Y). Sequence comparisons and phylogenetic analysis showed that ObEV1 is a novel mycovirus belonging to the genus Betaendornavirus of the family Endornaviridae. This is the first report of a mycovirus in the ophiostomatoid fungus O. bicolor.


Subject(s)
Fungal Viruses , RNA Viruses , Phylogeny , Viral Proteins/genetics , Genome, Viral , Open Reading Frames , Polyproteins/genetics , RNA, Viral/genetics
5.
Front Microbiol ; 13: 800981, 2022.
Article in English | MEDLINE | ID: mdl-35283828

ABSTRACT

Botryosphaeriaceae, as a major family of the largest class of kingdom fungi Dothideomycetes, encompasses phytopathogens, saprobes, and endophytes. Many members of this family are opportunistic phytopathogens with a wide host range and worldwide geographical distribution, and can infect many economically important plants, including food crops and raw material plants for biofuel production. To date, however, little is known about the family evolutionary characterization, mating strategies, and pathogenicity-related genes variation from a comparative genome perspective. Here, we conducted a large-scale whole-genome comparison of 271 Dothideomycetes, including 19 species in Botryosphaeriaceae. The comparative genome analysis provided a clear classification of Botryosphaeriaceae in Dothideomycetes and indicated that the evolution of lifestyle within Dothideomycetes underwent four major transitions from non-phytopathogenic to phytopathogenic. Mating strategies analysis demonstrated that at least 3 transitions were found within Botryosphaeriaceae from heterothallism to homothallism. Additionally, pathogenicity-related genes contents in different genera varied greatly, indicative of genus-lineage expansion within Botryosphaeriaceae. These findings shed new light on evolutionary traits, mating strategies and pathogenicity-related genes variation of Botryosphaeriaceae.

6.
Food Sci Biotechnol ; 29(7): 889-896, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32582451

ABSTRACT

When transporting yogurt, vibrations and sharp movements can damage its quality. This study developed a model to connect the changes in yogurt quality with the transportation distance as simulated by the total number of vibrations. Linear regression analysis showed that there was a significant negative correlation between the water holding capacity and hardness of the yogurt over the same transport distance (p < 0.05). The yogurt vibration model was established by combining principal component analysis with a Back-Propagation Artificial Neural Network model. The number of training iterations was 2669, with a correlation coefficient of 0.96611, indicating that the model was reliable. The optimal transportation distance was determined to be within the range from 20 rpm for 8 h to 100 rpm for 4 h.

7.
BMC Genomics ; 21(1): 2, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898484

ABSTRACT

BACKGROUND: The clinical success of immune checkpoint inhibitors demonstrates that reactivation of the human immune system delivers durable responses for some patients and represents an exciting approach for cancer treatment. An important class of preclinical in vivo models for immuno-oncology is immunocompetent mice bearing mouse syngeneic tumors. To facilitate translation of preclinical studies into human, we characterized the genomic, transcriptomic, and protein expression of a panel of ten commonly used mouse tumor cell lines grown in vitro culture as well as in vivo tumors. RESULTS: Our studies identified a number of genetic and cellular phenotypic differences that distinguish commonly used mouse syngeneic models in our study from human cancers. Only a fraction of the somatic single nucleotide variants (SNVs) in these common mouse cell lines directly match SNVs in human actionable cancer genes. Some models derived from epithelial tumors have a more mesenchymal phenotype with relatively low T-lymphocyte infiltration compared to the corresponding human cancers. CT26, a colon tumor model, had the highest immunogenicity and was the model most responsive to CTLA4 inhibitor treatment, by contrast to the relatively low immunogenicity and response rate to checkpoint inhibitor therapies in human colon cancers. CONCLUSIONS: The relative immunogenicity of these ten syngeneic tumors does not resemble typical human tumors derived from the same tissue of origin. By characterizing the mouse syngeneic models and comparing with their human tumor counterparts, this study contributes to a framework that may help investigators select the model most relevant to study a particular immune-oncology mechanism, and may rationalize some of the challenges associated with translating preclinical findings to clinical studies.


Subject(s)
CTLA-4 Antigen/genetics , Colonic Neoplasms/immunology , Genomics , Animals , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , T-Lymphocytes/immunology
8.
Exp Eye Res ; 116: 129-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23978599

ABSTRACT

The present study was designed to examine the regulation of crystallin genes and protein in the mouse retina using the BXD recombinant inbred (RI) strains. Illumina Sentrix BeadChip Arrays (MouseWG-6v2) were used to analyze mRNA levels in 75 BXD RI strains along with the parental strains (C57Bl/6J and DBA/2J), and the reciprocal crosses in the Hamilton Eye Institute (HEI) Retina Dataset (www.genenetwork.org). Protein levels were investigated using immunoblots to quantify levels of proteins and indirect immunohistochemistry to define the distribution of protein. Algorithms in the Genomatix program were used to identify transcription factor binding sites common to the regulatory sequences in the 5' regions of co-regulated set of crystallin and other genes as compared to a set of control genes. As subset of genes, including many encoding lens crystallins is part of a tightly co-regulated network that is active in the retina. Expression of this crystallin network appears to be binary in nature, being expressed either at relatively low levels or being highly upregulated. Relative to a control set of genes, the 5' regulatory sequences of the crystallin network genes show an increased frequency of a set of common transcription factor-binding sites, the most common being those of the Maf family. Chromatin immunoprecipitation of human lens epithelial cells (HLEC) and rat retinal ganglion cells (RGC) confirmed the functionality of these sites, showing that MafA binds the predicted sites of CRYGA and CRYGD in HLE and CRYAB, CRYGA, CRYBA1, and CRYBB3 in RGC cells. In the retina there is a highly correlated group of genes containing many members of the α- ß- and γ-crystallin families. These genes can be dramatically upregulated in the retina. One transcription factor that appears to be involved in this coordinated expression is the MAF family transcription of factors associated with both lens and extralenticular expression of crystallin genes.


Subject(s)
Crystallins/genetics , RNA, Messenger/genetics , Retina/metabolism , Animals , Cells, Cultured , Crystallins/metabolism , Gene Regulatory Networks , Humans , Immunoblotting , Immunohistochemistry , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Retina/cytology , Transcription Factors/genetics , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...