Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Nat Commun ; 15(1): 1637, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388640

ABSTRACT

Translational control exerts immediate effect on the composition, abundance, and integrity of the proteome. Ribosome-associated quality control (RQC) handles ribosomes stalled at the elongation and termination steps of translation, with ZNF598 in mammals and Hel2 in yeast serving as key sensors of translation stalling and coordinators of downstream resolution of collided ribosomes, termination of stalled translation, and removal of faulty translation products. The physiological regulation of RQC in general and ZNF598 in particular in multicellular settings is underexplored. Here we show that ZNF598 undergoes regulatory K63-linked ubiquitination in a CNOT4-dependent manner and is upregulated upon mitochondrial stresses in mammalian cells and Drosophila. ZNF598 promotes resolution of stalled ribosomes and protects against mitochondrial stress in a ubiquitination-dependent fashion. In Drosophila models of neurodegenerative diseases and patient cells, ZNF598 overexpression aborts stalled translation of mitochondrial outer membrane-associated mRNAs, removes faulty translation products causal of disease, and improves mitochondrial and tissue health. These results shed lights on the regulation of ZNF598 and its functional role in mitochondrial and tissue homeostasis.


Subject(s)
Protein Biosynthesis , Saccharomyces cerevisiae Proteins , Animals , Humans , Carrier Proteins/metabolism , Drosophila/metabolism , Homeostasis , Mammals/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
J Biol Chem ; 300(3): 105719, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311171

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Drosophila Proteins , Endoribonucleases , Receptors for Activated C Kinase , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Protein Serine-Threonine Kinases , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Drosophila melanogaster , Disease Models, Animal , Endoribonucleases/genetics , Endoribonucleases/metabolism
3.
Dev Biol ; 507: 11-19, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142805

ABSTRACT

Notch signaling controls numerous key cellular processes including cell fate determination and cell proliferation. Its malfunction has been linked to many developmental abnormalities and human disorders. Overactivation of Notch signaling is shown to be oncogenic. Retention of excess Notch protein in the endoplasmic reticulum (ER) can lead to altered Notch signaling and cell fate, but the mechanism is not well understood. In this study, we show that V5-tagged or untagged exogenous Notch is retained in the ER when overexpressed in fly tissues. Furthermore, we show that Notch retention in the ER leads to robust ER enlargement and elicits a rough eye phenotype. Gain-of-function of unfolded protein response (UPR) factors IRE1 or spliced Xbp1 (Xbp1-s) alleviates Notch accumulation in the ER, restores ER morphology and ameliorates the rough eye phenotype. Our results uncover a pivotal role of the IRE1/Xbp1 axis in regulating the detrimental effect of ER-localized excess Notch protein during development and tissue homeostasis.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Homeostasis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Unfolded Protein Response
4.
eNeuro ; 10(8)2023 08.
Article in English | MEDLINE | ID: mdl-37550059

ABSTRACT

As cellular energy powerhouses, mitochondria undergo constant fission and fusion to maintain functional homeostasis. The conserved dynamin-like GTPase, Mitofusin2 (MFN2)/mitochondrial assembly regulatory factor (Marf), plays a role in mitochondrial fusion, mutations of which are implicated in age-related human diseases, including several neurodegenerative disorders. However, the regulation of MFN2/Marf-mediated mitochondrial fusion, as well as the pathologic mechanism of neurodegeneration, is not clearly understood. Here, we identified a novel interaction between MFN2/Marf and microtubule affinity-regulating kinase 4 (MARK4)/PAR-1. In the Drosophila larval neuromuscular junction, muscle-specific overexpression of MFN2/Marf decreased the number of synaptic boutons, and the loss of MARK4/PAR-1 alleviated the synaptic defects of MFN2/Marf overexpression. Downregulation of MARK4/PAR-1 rescued the mitochondrial hyperfusion phenotype caused by MFN2/Marf overexpression in the Drosophila muscles as well as in the cultured cells. In addition, knockdown of MARK4/PAR-1 rescued the respiratory dysfunction of mitochondria induced by MFN2/Marf overexpression in mammalian cells. Together, our results indicate that the interaction between MFN2/Marf and MARK4/PAR-1 is fine-tuned to maintain synaptic integrity and mitochondrial homeostasis, and its dysregulation may be implicated in neurologic pathogenesis.


Subject(s)
Drosophila Proteins , Mitochondria , Synapses , Animals , Humans , Drosophila , Drosophila Proteins/genetics , GTP Phosphohydrolases/genetics , Mammals , Microtubules , Mitochondria/pathology , Mitochondrial Proteins/genetics , Protein Serine-Threonine Kinases , Synapses/pathology
5.
Antioxidants (Basel) ; 12(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37107270

ABSTRACT

Stroke is one of the leading causes of morbidity and mortality worldwide. A main cause of brain damage by stroke is ischemia-reperfusion (IR) injury due to the increased production of reactive oxygen species (ROS) and energy failure caused by changes in mitochondrial metabolism. Ischemia causes a build-up of succinate in tissues and changes in the mitochondrial NADH: ubiquinone oxidoreductase (complex I) activity that promote reverse electron transfer (RET), in which a portion of the electrons derived from succinate are redirected from ubiquinol along complex I to reach the NADH dehydrogenase module of complex I, where matrix NAD+ is converted to NADH and excessive ROS is produced. RET has been shown to play a role in macrophage activation in response to bacterial infection, electron transport chain reorganization in response to changes in the energy supply, and carotid body adaptation to changes in the oxygen levels. In addition to stroke, deregulated RET and RET-generated ROS (RET-ROS) have been implicated in tissue damage during organ transplantation, whereas an RET-induced NAD+/NADH ratio decrease has been implicated in aging, age-related neurodegeneration, and cancer. In this review, we provide a historical account of the roles of ROS and oxidative damage in the pathogenesis of ischemic stroke, summarize the latest developments in our understanding of RET biology and RET-associated pathological conditions, and discuss new ways to target ischemic stroke, cancer, aging, and age-related neurodegenerative diseases by modulating RET.

6.
Dev Cell ; 58(7): 597-615.e10, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37040696

ABSTRACT

Loss of fragile X messenger ribonucleoprotein (FMRP) causes fragile X syndrome (FXS), the most prevalent form of inherited intellectual disability. Here, we show that FMRP interacts with the voltage-dependent anion channel (VDAC) to regulate the formation and function of endoplasmic reticulum (ER)-mitochondria contact sites (ERMCSs), structures that are critical for mitochondrial calcium (mito-Ca2+) homeostasis. FMRP-deficient cells feature excessive ERMCS formation and ER-to-mitochondria Ca2+ transfer. Genetic and pharmacological inhibition of VDAC or other ERMCS components restored synaptic structure, function, and plasticity and rescued locomotion and cognitive deficits of the Drosophila dFmr1 mutant. Expressing FMRP C-terminal domain (FMRP-C), which confers FMRP-VDAC interaction, rescued the ERMCS formation and mito-Ca2+ homeostasis defects in FXS patient iPSC-derived neurons and locomotion and cognitive deficits in Fmr1 knockout mice. These results identify altered ERMCS formation and mito-Ca2+ homeostasis as contributors to FXS and offer potential therapeutic targets.


Subject(s)
Drosophila Proteins , Fragile X Syndrome , Animals , Mice , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Calcium/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Drosophila/metabolism , Mice, Knockout , Homeostasis , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Voltage-Dependent Anion Channels/metabolism , Drosophila Proteins/metabolism
7.
J Biol Chem ; 299(3): 102995, 2023 03.
Article in English | MEDLINE | ID: mdl-36764521

ABSTRACT

Expansion of G4C2 hexanucleotide repeats in the chromosome 9 ORF 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (C9-ALS/FTD). Dipeptide repeats generated by unconventional translation, especially the R-containing poly(GR), have been implicated in C9-ALS/FTD pathogenesis. Mutations in other genes, including TAR DNA-binding protein 43 KD (TDP-43), fused in sarcoma (FUS), and valosin-containing protein, have also been linked to ALS/FTD, and upregulation of amyloid precursor protein (APP) is observed at the early stage of ALS and FTD. Fundamental questions remain as to the relationships between these ALS/FTD genes and whether they converge on similar cellular pathways. Here, using biochemical, cell biological, and genetic analyses in Drosophila disease models, patient-derived fibroblasts, and mammalian cell culture, we show that mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling is activated by APP, TDP-43, and FUS and that mTORC2/AKT and its downstream target valosin-containing protein mediate the effect of APP, TDP-43, and FUS on the quality control of C9-ALS/FTD-associated poly(GR) translation. We also find that poly(GR) expression results in reduction of global translation and that the coexpression of APP, TDP-43, and FUS results in further reduction of global translation, presumably through the GCN2/eIF2α-integrated stress response pathway. Together, our results implicate mTORC2/AKT signaling and GCN2/eIF2α-integrated stress response as common signaling pathways underlying ALS/FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Dipeptides/metabolism , DNA Repeat Expansion , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Frontotemporal Dementia/pathology , Mammals/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Quality Control , Valosin Containing Protein/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism
8.
EMBO Rep ; 24(4): e55548, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36794623

ABSTRACT

Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Mice , Animals , Humans , NAD , Reactive Oxygen Species/metabolism , Electrons , Induced Pluripotent Stem Cells/metabolism , Aging/genetics , Aging/metabolism , Alzheimer Disease/genetics , Drosophila/genetics , Drosophila/metabolism
9.
J Cereb Blood Flow Metab ; 43(2): 241-257, 2023 02.
Article in English | MEDLINE | ID: mdl-36457151

ABSTRACT

Ischemic stroke results in blood-brain barrier (BBB) disruption, during which the reciprocal interaction between ischemic neurons and components of the BBB appears to play a critical role. However, the underlying mechanisms for BBB protection remain largely unknown. In this study, we found that Serpina3n, a serine protease inhibitor, was significantly upregulated in the ischemic brain, predominantly in ischemic neurons from 6 hours to 3 days after stroke. Using neuron-specific adeno-associated virus (AAV), intranasal delivery of recombinant protein, and immune-deficient Rag1-/- mice, we demonstrated that Serpina3n attenuated BBB disruption and immune cell infiltration following stroke by inhibiting the activity of granzyme B (GZMB) and neutrophil elastase (NE) secreted by T cells and neutrophils. Furthermore, we found that intranasal delivery of rSerpina3n significantly attenuated the neurologic deficits after stroke. In conclusion, Serpina3n is a novel ischemic neuron-derived proteinase inhibitor that counterbalances BBB disruption induced by peripheral T cell and neutrophil infiltration after ischemic stroke. These findings reveal a novel endogenous protective mechanism against BBB damage with Serpina3n being a potential therapeutic target in ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Serpins , Stroke , Mice , Animals , Blood-Brain Barrier/metabolism , Ischemic Stroke/metabolism , Infarction, Middle Cerebral Artery/metabolism , Neurons/metabolism , Acute-Phase Proteins/metabolism , Acute-Phase Proteins/therapeutic use , Serpins/therapeutic use , Serpins/metabolism
11.
Brain Sci ; 12(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36358399

ABSTRACT

Narcolepsy is a chronic, long-term neurological disorder characterized by a decreased ability to regulate sleep-wake cycles. Some clinical symptoms enter into differential diagnosis with other neurological diseases. Excessive daytime sleepiness and brief involuntary sleep episodes are the main clinical symptoms. The majority of people with narcolepsy experience cataplexy, which is a loss of muscle tone. Many people experience neurological complications such as sleep cycle disruption, hallucinations or sleep paralysis. Because of the associated neurological conditions, the exact pathophysiology of narcolepsy is unknown. The differential diagnosis is essential because relatively clinical symptoms of narcolepsy are easy to diagnose when all symptoms are present, but it becomes much more complicated when sleep attacks are isolated and cataplexy is episodic or absent. Treatment is tailored to the patient's symptoms and clinical diagnosis. To facilitate the diagnosis and treatment of sleep disorders and to better understand the neuropathological mechanisms of this sleep disorder, this review summarizes current knowledge on narcolepsy, in particular, genetic and non-genetic associations of narcolepsy, the pathophysiology up to the inflammatory response, the neuromorphological hallmarks of narcolepsy, and possible links with other diseases, such as diabetes, ischemic stroke and Alzheimer's disease. This review also reports all of the most recent updated research and therapeutic advances in narcolepsy. There have been significant advances in highlighting the pathogenesis of narcolepsy, with substantial evidence for an autoimmune response against hypocretin neurons; however, there are some gaps that need to be filled. To treat narcolepsy, more research should be focused on identifying molecular targets and novel autoantigens. In addition to therapeutic advances, standardized criteria for narcolepsy and diagnostic measures are widely accepted, but they may be reviewed and updated in the future with comprehension. Tailored treatment to the patient's symptoms and clinical diagnosis and future treatment modalities with hypocretin agonists, GABA agonists, histamine receptor antagonists and immunomodulatory drugs should be aimed at addressing the underlying cause of narcolepsy.

12.
Front Cell Dev Biol ; 10: 970654, 2022.
Article in English | MEDLINE | ID: mdl-36187485

ABSTRACT

Translational control at the initiation, elongation, and termination steps exerts immediate effects on the rate as well as the spatiotemporal dynamics of new protein synthesis, shaping the composition of the proteome. Translational control is particularly important for cells under stress as during viral infection or in disease conditions such as cancer and neurodegenerative diseases. Much has been learned about the control mechanisms acting at the translational initiation step under normal or pathological conditions. However, problems during the elongation or termination steps of translation can lead to ribosome stalling and ribosome collision, which will trigger ribosome-associated quality control (RQC) mechanism. Inadequate RQC may lead to the accumulation of faulty translation products that perturb protein homeostasis (proteostasis). Proteostasis signifies a cellular state in which the synthesis, folding, and degradation of proteins are maintained at a homeostatic state such that an intact proteome is preserved. Cellular capacity to preserve proteostasis declines with age, which is thought to contribute to age-related diseases. Proteostasis failure manifested as formation of aberrant protein aggregates, epitomized by the amyloid plaques in Alzheimer's disease (AD), is a defining feature of neurodegenerative diseases. The root cause of the proteostasis failure and protein aggregation is still enigmatic. Here I will review recent studies supporting that faulty translation products resulting from inadequate RQC of translational stalling and ribosome collision during the translation of problematic mRNAs can be the root cause of proteostasis failure and may represent novel therapeutic targets for neurodegenerative diseases. I will also review evidence that translation regulation by RQC is operative in cancer cells and during viral infection. Better understanding of RQC mechanism may lead to novel therapeutic strategies against neurodegenerative diseases, cancer, and viral infections, including the ongoing COVID-19 pandemic.

13.
Proc Natl Acad Sci U S A ; 119(42): e2202322119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36170200

ABSTRACT

An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.


Subject(s)
COVID-19 , Neurodegenerative Diseases , RNA-Dependent RNA Polymerase , Ribosomes , Viral Nonstructural Proteins , Alzheimer Disease , Amyotrophic Lateral Sclerosis , Animals , COVID-19/genetics , Drosophila , Humans , Neurodegenerative Diseases/genetics , Pandemics , Parkinson Disease , Proto-Oncogene Proteins c-akt , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism
14.
Neurol Int ; 14(2): 391-405, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35645351

ABSTRACT

Stroke is a fatal morbidity that needs emergency medical admission and immediate medical attention. COVID-19 ischemic brain damage is closely associated with common neurological symptoms, which are extremely difficult to treat medically, and risk factors. We performed literature research about COVID-19 and ischemia in PubMed, MEDLINE, and Scopus for this current narrative review. We discovered parallel manifestations of SARS-CoV-19 infection and brain ischemia risk factors. In published papers, we discovered a similar but complex pathophysiology of SARS-CoV-2 infection and stroke pathology. A patient with other systemic co-morbidities, such as diabetes, hypertension, or any respiratory disease, has a fatal combination in intensive care management when infected with SARS-CoV-19. Furthermore, due to their shared risk factors, COVID-19 and stroke are a lethal combination for medical management to treat. In this review, we discuss shared pathophysiology, adjuvant risk factors, challenges, and advancements in stroke-associated COVID-19 therapeutics.

15.
Brain Behav Immun Health ; 22: 100463, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35496775

ABSTRACT

Vaccination is an essential public health strategy to control the 2019 Coronavirus (COVID-19) pandemic. While the benefits of the COVID-19 vaccines far outweigh the risks, side effects continue to be reported in the literature. We report a 65-year-old man who developed cognitive deficits and memory impairments following his first dose of Oxford AstraZeneca vaccine (Covishield). The onset of acute cognitive deficits and memory impairments could be another complication to COVID-19 vaccination that physicians and neurologists need to be warned to. Monitoring the safety of COVID-19 vaccines and describing side effects associated with them is essential to improve safety profiles and enhance public trust.

16.
Nat Commun ; 13(1): 2412, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504872

ABSTRACT

Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson's disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.


Subject(s)
Drosophila Proteins , Neurodegenerative Diseases , Parkinson Disease , Acetyl Coenzyme A/metabolism , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases
17.
Sensors (Basel) ; 22(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35161547

ABSTRACT

Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.


Subject(s)
Electronics , Silicon , Cell Culture Techniques , Indicators and Reagents
18.
Dev Cell ; 57(2): 260-276.e9, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35077680

ABSTRACT

Metabolic flexibility is a hallmark of many cancers where mitochondrial respiration is critically involved, but the molecular underpinning of mitochondrial control of cancer metabolic reprogramming is poorly understood. Here, we show that reverse electron transfer (RET) through respiratory chain complex I (RC-I) is particularly active in brain cancer stem cells (CSCs). Although RET generates ROS, NAD+/NADH ratio turns out to be key in mediating RET effect on CSC proliferation, in part through the NAD+-dependent Sirtuin. Mechanistically, Notch acts in an unconventional manner to regulate RET by interacting with specific RC-I proteins containing electron-transporting Fe-S clusters and NAD(H)-binding sites. Genetic and pharmacological interference of Notch-mediated RET inhibited CSC growth in Drosophila brain tumor and mouse glioblastoma multiforme (GBM) models. Our results identify Notch as a regulator of RET and RET-induced NAD+/NADH balance, a critical mechanism of metabolic reprogramming and a metabolic vulnerability of cancer that may be exploited for therapeutic purposes.


Subject(s)
Electron Transport Complex I/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Notch/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Cell Respiration/physiology , Disease Models, Animal , Drosophila , Electron Transport/physiology , Electron Transport Complex I/physiology , Electrons , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred NOD , Mitochondria/metabolism , NAD/metabolism , Neoplastic Stem Cells/physiology , Reactive Oxygen Species/metabolism
19.
Acta Neuropathol Commun ; 9(1): 169, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663454

ABSTRACT

Amyloid precursor protein (APP) metabolism is central to Alzheimer's disease (AD) pathogenesis, but the key etiological driver remains elusive. Recent failures of clinical trials targeting amyloid-ß (Aß) peptides, the proteolytic fragments of amyloid precursor protein (APP) that are the main component of amyloid plaques, suggest that the proteostasis-disrupting, key pathogenic species remain to be identified. Previous studies suggest that APP C-terminal fragment (APP.C99) can cause disease in an Aß-independent manner. The mechanism of APP.C99 pathogenesis is incompletely understood. We used Drosophila models expressing APP.C99 with the native ER-targeting signal of human APP, expressing full-length human APP only, or co-expressing full-length human APP and ß-secretase (BACE), to investigate mechanisms of APP.C99 pathogenesis. Key findings are validated in mammalian cell culture models, mouse 5xFAD model, and postmortem AD patient brain materials. We find that ribosomes stall at the ER membrane during co-translational translocation of APP.C99, activating ribosome-associated quality control (RQC) to resolve ribosome collision and stalled translation. Stalled APP.C99 species with C-terminal extensions (CAT-tails) resulting from inadequate RQC are prone to aggregation, causing endolysosomal and autophagy defects and seeding the aggregation of amyloid ß peptides, the main component of amyloid plaques. Genetically removing stalled and CAT-tailed APP.C99 rescued proteostasis failure, endolysosomal/autophagy dysfunction, neuromuscular degeneration, and cognitive deficits in AD models. Our finding of RQC factor deposition at the core of amyloid plaques from AD brains further supports the central role of defective RQC of ribosome collision and stalled translation in AD pathogenesis. These findings demonstrate that amyloid plaque formation is the consequence and manifestation of a deeper level proteostasis failure caused by inadequate RQC of translational stalling and the resultant aberrantly modified APP.C99 species, previously unrecognized etiological drivers of AD and newly discovered therapeutic targets.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor/biosynthesis , Plaque, Amyloid/pathology , Protein Biosynthesis/physiology , Proteostasis/physiology , Ribosomes/metabolism , Animals , Drosophila , Humans , Mice , Protein Processing, Post-Translational/physiology
20.
Elife ; 102021 09 22.
Article in English | MEDLINE | ID: mdl-34550070

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder without effective disease-modifying therapeutics. Here, we establish a chemogenetic dopamine (DA) neuron ablation model in larval zebrafish with mitochondrial dysfunction and robustness suitable for high-content screening. We use this system to conduct an in vivo DA neuron imaging-based chemical screen and identify the Renin-Angiotensin-Aldosterone System (RAAS) inhibitors as significantly neuroprotective. Knockdown of the angiotensin receptor 1 (agtr1) in DA neurons reveals a cell-autonomous mechanism of neuroprotection. DA neuron-specific RNA-seq identifies mitochondrial pathway gene expression that is significantly restored by RAAS inhibitor treatment. The neuroprotective effect of RAAS inhibitors is further observed in a zebrafish Gaucher disease model and Drosophila pink1-deficient PD model. Finally, examination of clinical data reveals a significant effect of RAAS inhibitors in delaying PD progression. Our findings reveal the therapeutic potential and mechanisms of targeting the RAAS pathway for neuroprotection and demonstrate a salient approach that bridges basic science to translational medicine.


Parkinson's disease is caused by the slow death and deterioration of brain cells, in particular of the neurons that produce a chemical messenger known as dopamine. Certain drugs can mitigate the resulting drop in dopamine levels and help to manage symptoms, but they cause dangerous side-effects. There is no treatment that can slow down or halt the progress of the condition, which affects 0.3% of the population globally. Many factors, both genetic and environmental, contribute to the emergence of Parkinson's disease. For example, dysfunction of the mitochondria, the internal structures that power up cells, is a known mechanism associated with the death of dopamine-producing neurons. Zebrafish are tiny fish which can be used to study Parkinson's disease, as they are easy to manipulate in the lab and share many characteristics with humans. In particular, they can be helpful to test the effects of various potential drugs on the condition. Here, Kim et al. established a new zebrafish model in which dopamine-producing brain cells die due to their mitochondria not working properly; they then used this assay to assess the impact of 1,403 different chemicals on the integrity of these cells. A group of molecules called renin-angiotensin-aldosterone (RAAS) inhibitors was shown to protect dopamine-producing neurons and stopped them from dying as often. These are already used to treat high blood pressure as they help to dilate blood vessels. In the brain, however, RAAS worked by restoring certain mitochondrial processes. Kim et al. then investigated whether these results are relevant in other, broader contexts. They were able to show that RAAS inhibitors have the same effect in other animals, and that Parkinson's disease often progresses more slowly in patients that already take these drugs for high blood pressure. Taken together, these findings therefore suggest that RAAS inhibitors may be useful to treat Parkinson's disease, as well as other brain illnesses that emerge because of mitochondria not working properly. Clinical studies and new ways to improve these drugs are needed to further investigate and capitalize on these potential benefits.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Antiparkinson Agents/pharmacology , Dopaminergic Neurons/drug effects , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Renin-Angiotensin System/drug effects , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Animals, Genetically Modified , Antiparkinson Agents/therapeutic use , Case-Control Studies , Databases, Factual , Disease Models, Animal , Dopaminergic Neurons/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Gaucher Disease/metabolism , High-Throughput Screening Assays , Humans , Mitochondria/genetics , Mitochondria/metabolism , Neuroprotective Agents/therapeutic use , Parkinson Disease/genetics , Parkinson Disease/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...