Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109943, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810897

ABSTRACT

Cathelicidins are important antimicrobial peptides in various vertebrate species where they are crucial parts of the innate immune system. The current understanding of amphibian cathelicidins is limited, particularly with regard to their immunomodulatory effects. To address this knowledge gap, we produced the cDNA sequence of the cathelicidin gene from a skin transcriptome of the Chinese spiny frog Quasipaa spinosa. The amino acid sequence of the Quasipaa spinosa cathelicidin (QS-CATH) was predicted to consist of a signal peptide, a cathelin domain, and a mature peptide. Comparative analysis of the QS-CATH amino acid sequence with that of other amphibian cathelicidins revealed high variability in the functional mature peptide among amphibians, whereas the cathelin domain was conserved. The QS-CATH gene was expressed in several tissues, with the highest level of expression in the spleen. Upregulation of QS-CATH after Aeromonas hydrophila infection occurred in the kidney, gut, spleen, skin, and liver. Chemically synthesized QS-CATH exhibited pronounced antibacterial activity against Shigella flexneri, Staphylococcus warneri, Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Furthermore, QS-CATH disrupted the cell membrane integrity of S. flexneri, as evidenced by a lactate dehydrogenase release assay, and it hydrolyzed the genomic DNA of S. flexneri. Additionally, QS-CATH elicited chemotaxis and modulated the expression of inflammatory cytokine genes in RAW264.7 mouse leukemic monocyte/macrophage cells. These findings confirm the antimicrobial effects of amphibian cathelicidin and its ability to influence immune cell function. This will expedite the potential utilization of amphibian antimicrobial peptides as therapeutic agents.

2.
Article in English | MEDLINE | ID: mdl-38056223

ABSTRACT

Recently, populations of Chinese spiny frogs (Quasipaa spinosa), an important amphibian species in China, have decreased, mainly due to a disease caused by the gram-negative bacteria Proteus mirabilis. To elucidate the immune response of the frogs, this study aimed to identify novel candidate genes functionally associated with P. mirabilis infection-induced "rotting skin" disease. Chinese spiny frogs were infected with P. mirabilis, and the skin transcriptome was sequenced using the MGISEQ-2000 platform. A total of 233,965 unigenes were obtained by sequencing, of which 27.23 % were known genes. Screening of differentially expressed genes (DEGs) indicated 210 unigenes differentially expressed after P. mirabilis infection, of which 132 unigenes were up-regulated, and 78 unigenes were down-regulated. Using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, DEGs were identified as enriched in signal pathways, such as oxidative phosphorylation, apoptosis, and the Janus kinase-signal transducer and activator of transcription pathway. Of the DEGs, there was a significant upregulation of the colony stimulating factor 2 receptor beta common subunit, interleukin 2 receptor subunit gamma, cathelicidin antimicrobial peptide, interleukin-17 receptor E, receptor-interacting serine/threonine-protein kinase 3, and pulmonary surfactant-associated protein D immune genes following P. mirabilis infection. Conversely, scavenger receptor cysteine-rich domain-containing group B protein, tumor protein p53 inducible nuclear protein 2, suppressor of cytokine signaling 2, and metalloreductase STEAP3 were significantly downregulated. In conclusion, the first skin transcriptome database of Chinese spiny frogs was established, and several immune genes were identified to elucidate the pathogenic mechanism of "skin rot" in Chinese spiny frogs and other cultured frogs.


Subject(s)
Proteus mirabilis , Skin Diseases , Animals , Proteus mirabilis/genetics , Gene Expression Profiling , Transcriptome , Anura , Ranidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...