Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Nephrol Renovasc Dis ; 17: 167-174, 2024.
Article in English | MEDLINE | ID: mdl-38855711

ABSTRACT

Introduction: X-linked Alport syndrome (XLAS) is caused by pathogenic variants in COL4A5 which lead to abnormalities of the glomerular basement membrane (GBM) structural and is characterized by progressive kidney disease, hearing loss, and ocular abnormalities. The aim of this study was to identify gene mutations in a Chinese family with XLAS by whole-exome sequencing (WES) and verified the pathogenicity of the mutation in vitro experiments. Case Presentation: A five-generation pedigree with a total of 49 family members originating from Hainan province of China was investigated in this study. The proband was a 23-year-old male who developed microscopic hematuria, proteinuria and end-stage kidney disease (ESKD) at age 17. WES identified a novel splicing mutation c.321+5G>A of COL4A5, which cause exon skip. Further co-segregation analysis confirmed that this mutation exists in relatives who had renal abnormalities using Sanger sequencing. According to American College of Medical Genetics and Genomics guidelines (ACMG), the mutation was determined to be of uncertain significance (VUS). In vitro splicing experiments have shown that the COL4A5 variant induces aberrant mRNA splicing and transcript deletion. Conclusion: We identified a novel intronic COL4A5 pathogenic mutation (c.321+5G>A) in a Chinese XLAS family and described the phenotypes of affected relatives. This study expands the mutation spectrum of COL4A5 gene in XLAS and demonstrates the importance of gene screening for AS.

2.
BMC Genomics ; 25(1): 230, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429690

ABSTRACT

BACKGROUND: Krüppel-like factor 1 (KLF1), a crucial erythroid transcription factor, plays a significant role in various erythroid changes and haemolytic diseases. The rare erythrocyte Lutheran inhibitor (In(Lu)) blood group phenotype serves as an effective model for identifying KLF1 hypomorphic and loss-of-function variants. In this study, we aimed to analyse the genetic background of the In(Lu) phenotype in a population-based sample group by high-throughput technologies to find potentially clinically significant KLF1 variants. RESULTS: We included 62 samples with In(Lu) phenotype, screened from over 300,000 Chinese blood donors. Among them, 36 samples were sequenced using targeted Next Generation Sequencing (NGS), whereas 19 samples were sequenced using High Fidelity (HiFi) technology. In addition, seven samples were simply sequenced using Sanger sequencing. A total of 29 hypomorphic or loss-of-function variants of KLF1 were identified, 21 of which were newly discovered. All new variants discovered by targeted NGS or HiFi sequencing were validated through Sanger sequencing, and the obtained results were found to be consistent. The KLF1 haplotypes of all new variants were further confirmed using clone sequencing or HiFi sequencing. The lack of functional KLF1 variants detected in the four samples indicates the presence of additional regulatory mechanisms. In addition, some samples exhibited BCAM polymorphisms, which encodes antigens of the Lutheran (LU) blood group system. However, no BCAM mutations which leads to the absence of LU proteins were detected. CONCLUSIONS: High-throughput sequencing methods, particularly HiFi sequencing, were introduced for the first time into genetic analysis of the In(Lu) phenotype. Targeted NGS and HiFi sequencing demonstrated the accuracy of the results, providing additional advantages such as simultaneous analysis of other blood group genes and clarification of haplotypes. Using the In(Lu) phenotype, a powerful model for identifying hypomorphic or loss-of-function KLF1 variants, numerous novel variants have been detected, which have contributed to the comprehensive understanding of KLF1. These clinically significant KLF1 mutations can serve as a valuable reference for the diagnosis of related blood cell diseases.


Subject(s)
Blood Group Antigens , Kruppel-Like Transcription Factors , Blood Group Antigens/genetics , High-Throughput Nucleotide Sequencing , Lutheran Blood-Group System/genetics , Mutation , Humans
3.
Arch Gynecol Obstet ; 309(5): 1787-1799, 2024 May.
Article in English | MEDLINE | ID: mdl-38376520

ABSTRACT

BACKGROUND: Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements. DEVELOPMENT OF PGT: Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome. PURPOSE OF REVIEW: In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed. CONCLUSIONS: This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.


Subject(s)
Genetic Testing , Preimplantation Diagnosis , Pregnancy , Female , Humans , Genetic Testing/methods , Preimplantation Diagnosis/methods , Embryo Implantation , Fertilization in Vitro , Aneuploidy
4.
Signal Transduct Target Ther ; 9(1): 42, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355848

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage, which includes hepatic dysfunction, as observed in over 50% of COVID-19 patients. Angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (ACE2) is the primary receptor for SARS-CoV-2 entry into host cells, and studies have shown the presence of intracellular virus particles in human hepatocytes that express ACE2, but at extremely low levels. Consequently, we asked if hepatocytes might express receptors other than ACE2 capable of promoting the entry of SARS-CoV-2 into cells. To address this question, we performed a genome-wide CRISPR-Cas9 activation library screening and found that Asialoglycoprotein receptor 1 (ASGR1) promoted SARS-CoV-2 pseudovirus infection of HeLa cells. In Huh-7 cells, simultaneous knockout of ACE2 and ASGR1 prevented SARS-CoV-2 pseudovirus infection. In the immortalized THLE-2 hepatocyte cell line and primary hepatic parenchymal cells, both of which barely expressed ACE2, SARS-CoV-2 pseudovirus could successfully establish an infection. However, after treatment with ASGR1 antibody or siRNA targeting ASGR1, the infection rate significantly dropped, suggesting that SARS-CoV-2 pseudovirus infects hepatic parenchymal cells mainly through an ASGR1-dependent mechanism. We confirmed that ASGR1 could interact with Spike protein, which depends on receptor binding domain (RBD) and N-terminal domain (NTD). Finally, we also used Immunohistochemistry and electron microscopy to verify that SARS-CoV-2 could infect primary hepatic parenchymal cells. After inhibiting ASGR1 in primary hepatic parenchymal cells by siRNA, the infection efficiency of the live virus decreased significantly. Collectively, these findings indicate that ASGR1 is a candidate receptor for SARS-CoV-2 that promotes infection of hepatic parenchymal cells.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/physiology , Asialoglycoprotein Receptor/genetics , HeLa Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Hepatocytes , RNA, Small Interfering
5.
Electrophoresis ; 45(5-6): 548-556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185764

ABSTRACT

Several molecular biology methods are available for high-throughput blood typing. In this study, we aimed to build a high-throughput blood-group genetic screening system for high-frequency blood-group antigen-negative rare-blood groups in donors and patients. The amplification primers for all blood-type gene fragments involving the selected alleles were designed for detection. Single-base extend primers were also designed based on specific loci. DNA fragments were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) for the last nucleotide identification of amplification products in the extend step. The accuracy was verified by known samples. Thirty-six random samples were detected by serological tests and sequencing to verify the system stability. After verification, according to the collected known rare-blood-type samples, all the alleles designed to be detected matched with the validated single-nucleotide polymorphisms. The verification tests showed that all genotyping results of the random samples were in accordance with the findings of serotyping and sequencing. Then, 1258 random donor samples were screened by the built typing system after the verification. Three Fy(a-) and four s- were screened out in 1258 random blood samples. The multiple polymerase chain reaction-based MS detection system can be used in rare-blood-type screening with good accuracy and stability.


Subject(s)
Blood Group Antigens , Humans , Blood Group Antigens/genetics , Genotype , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Alleles , Polymorphism, Single Nucleotide , DNA Primers/genetics
6.
Biomaterials ; 306: 122480, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271787

ABSTRACT

In this work, a promising treatment strategy for triggering robust antitumor immune responses in transarterial chemoembolization of hepatocellular carcinoma (HCC) is presented. The zeolitic imidazolate framework nanoparticles loaded with hypoxia-activated prodrug tirapazamine and immune adjuvant resiquimod facilitated in situ generation of nanovaccine via a facile approach. The nanovaccine can strengthen the ability of killing the liver cancer cells under hypoxic environment, while was capable of improving immunogenic tumor microenvironment and triggering strong antitumor immune responses by increasing the primary and distant intratumoral infiltration of immune cells such as cytotoxic T cells. Moreover, a porous microcarrier, approved by FDA as pharmaceutical excipient, was designed to achieve safe and effective delivery of the nanovaccine via transarterial therapy in rabbit orthotopic VX2 liver cancer model. The microcarrier exhibited the characteristics of excellent drug loading and occlusion of peripheral artery. The collaborative delivery of the microcarrier and nanovaccine demonstrated an exciting inhibitory effect on solid tumors and tumor metastases, which provided a great potential as novel combination therapy for HCC interventional therapy.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Animals , Rabbits , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/pathology , Nanovaccines , Hypoxia/drug therapy , Tumor Microenvironment
7.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206971

ABSTRACT

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Subject(s)
Genome-Wide Association Study , Privacy , Humans , Genome-Wide Association Study/methods , Genotype , Software , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL