Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
2.
Anal Chem ; 95(16): 6603-6611, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37043629

ABSTRACT

The total antioxidant capacity (TAC) is a key indicator of the body's resistance to oxidative stress injury in diabetic patients. The measurement of TAC is important for effectively evaluating the redox state to prevent and control the occurrence of diabetes complications. However, there is a lack of a simple, convenient, and reliable method to detect the total antioxidant capacity in diabetes. Herein, we design a novel chemiluminescent platform based on semiconducting polymer nanoparticles-manganese (SPNs-MnVII) to detect the total antioxidant capacity of urine in diabetic mice. We synthesize semiconducting polymer nanoparticles with four different structures and discover the ability of MnVII to produce singlet oxygen (1O2) that is employed to excite thiophene-based SPNs (PFODBT) to emit near-infrared chemiluminescence. Notably, the chemiluminescent intensity has a good linear relationship with the concentration of MnVII (detection limit: 2.8 µM). Because antioxidants (e.g., glutathione or ascorbic acid) can react with MnVII, such a chemiluminescent tool of SPNs (PFODBT)-MnVII can detect the glutathione or ascorbic acid with a larger responsive range. Furthermore, the total antioxidant capacity of urine from mice is evaluated via SPNs (PFODBT)-MnVII, and there are statistically significant differences between diabetic and healthy mice. Thus, this new chemiluminescent platform of SPNs (PFODBT)-MnVII is convenient, efficient, and sensitive, which is promising for monitoring antioxidant therapy of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Animals , Mice , Antioxidants , Ascorbic Acid , Glutathione , Manganese/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Luminescent Measurements
SELECTION OF CITATIONS
SEARCH DETAIL
...