Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 36(32): e2403525, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762765

ABSTRACT

Heterogeneous catalysts embracing metal entities on suitable supports are profound in catalyzing various chemical reactions, and substantial synthetic endeavors in metal-support interaction modulation are made to enhance catalytic performance. Here, it is reported the loading of sub-2 nm Ru nanocrystals (NCs) on titanium nitride support (HTS-Ru-NCs/TiN) via a special Ru-Ti interaction using the high-temperature shock (HTS) method. Direct dechlorination of the adsorbed RuCl3, ultrafast nucleation process, and short coalescence duration at ultrahigh temperatures contribute to the immobilization of Ru NCs on TiN support via producing the Ru-Ti interfacial perimeter. HTS-Ru-NCs/TiN shows remarkable activity toward hydrogen evolution reaction (HER) in alkaline solution, yielding ultralow overpotentials of 16.3 and 86.6 mV to achieve 10 and 100 mA cm-2, respectively. The alkaline and anion exchange membrane water electrolyzers assembled using HTS-Ru-NCs/TiN yield 1.0 A cm-2 at 1.65 and 1.67 V, respectively, which validate its applicability in the hydrogen production industry. Theoretical simulations reveal the favorable formation of Ru─O and Ti─H bonds at the interfacial perimeters between Ru NCs and TiN, which accelerates the prerequisite water dissociation kinetics for enhanced HER activity. This exemplified work motivates the design of specific interfacial perimeters via the HTS strategy to improve the performance of diverse catalysis.

2.
Angew Chem Int Ed Engl ; 62(38): e202309784, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37539978

ABSTRACT

Metal single atoms (SAs) anchored in carbon support via coordinating with N atoms are efficient active sites to oxygen reduction reaction (ORR). However, rational design of single atom catalysts with highly exposed active sites is challenging and urgently desirable. Herein, an anion exchange strategy is presented to fabricate Fe-N4 moieties anchored in hierarchical carbon nanoplates composed of hollow carbon spheres (Fe-SA/N-HCS). With the coordinating O atoms are substituted by N atoms, Fe SAs with Fe-O4 configuration are transformed into the ones with Fe-N4 configuration during the thermal activation process. Insights into the evolution of central atoms demonstrate that the SAs with specific coordination environment can be obtained by modulating in situ anion exchange process. The strategy produces a large quantity of electrochemical accessible site and high utilization rate of Fe-N4 . Fe-SA/N-HCS shows excellent ORR electrocatalytic performance with half-wave potential of 0.91 V (vs. RHE) in 0.1 M KOH, and outstanding performance when used in rechargeable aqueous and flexible Zn-air batteries. The evolution pathway for SAs demonstrated in this work offers a novel strategy to design SACs with various coordination environment and enhanced electrocatalytic activity.

3.
J Colloid Interface Sci ; 633: 828-835, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36495805

ABSTRACT

The rational design and fabrication of platinum group metal-free (PGM-free) electrocatalysts for oxygen reduction reaction (ORR) via economically feasible approach is essential for reducing the cost of fuel cells and metal-air batteries. Catalysts must have very high activity, and excellent mass diffusion of reactants. Herein, we display a high-performing dual-metal single atom catalyst (DM-SAC) composed of Fe and Ni SA active sites immobilized in porous carbon nanospheres (Fe/Ni-N-PCS), prepared via defects/vacancies anchoring strategy. The abundant and accessible edge-hosted Fe and Ni SA active sites can promote the adsorption/desorption behavior for ORR intermediates attributing to possible synergistic effects between dual-metal SA active sites. Thus, the as-developed Fe/Ni-N-PCS DM-SAC exhibits impressive ORR electrocatalytic performance in both alkaline (Eonset = 1.04 V, E1/2 = 0.9 V) and acid solutions (Eonset = 0.87 V, E1/2 = 0.71 V), and high stability, outperforming SACs with solo Fe-Nx or Ni-Nx active sites, and benchmark PGM. Fe/Ni-N-PCS also exhibits superior oxygen evolution reaction (OER) performance with low overpotential and long-term stability. Zn-air battery with Fe/Ni-N-PCS cathode yields encouraging performance, including working potential, peak power density, and the stability of charge and discharge cycles. Our synthesis method may promote the fabrication of other DM-SAC and the great promise in practical applications.

4.
Chem Commun (Camb) ; 56(72): 10489-10492, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32766645

ABSTRACT

A base-mediated cascade amidination/N-alkylation reaction of amines by alcohols has been developed. For the first time, nitriles have been identified as an efficient and benign water acceptor reagent in N-alkylation. Notably, the procedure tolerates a series of functional groups, such as methoxyl, halo, vinyl and hetero groups, providing a convenient method to construct different substituted diamino compounds, 15N labeled amine and could be scaled up to 1 mol scale offering 138.7 g of the desired product in good yield in one-pot. Mechanistic studies provided strong evidence for the amidination of amines with nitriles facilitated by t-BuOK.

5.
J Org Chem ; 85(12): 7728-7738, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32452200

ABSTRACT

Novel and efficient base-mediated N-alkylation and amidation of amidines with alcohols have been developed, which can be carried out in one-pot reaction conditions, which allows for the synthesis of a wide range of N-alkyl amines and free amides in good to excellent yields with high atom economy. In contrast to borrowing hydrogen/hydrogen autotransfer or oxidative-type N-alkylation reactions, in which alcohols are activated by transition-metal-catalyzed or oxidative aerobic dehydrogenation, the use of amidines provides an effective surrogate of amines. This circumvents the inherent necessity in N-alkylation of an oxidant or a catalyst to be stabilized by ligands.

SELECTION OF CITATIONS
SEARCH DETAIL