Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 951
Filter
1.
Insects ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786859

ABSTRACT

Insects constitute the largest proportion of animals on Earth and act as significant reservoirs and vectors in disease transmission. Rice thrips (Haplothrips aculeatus, family Phlaeothripidae) are one of the most common pests in agriculture. In this study, the full genome sequence of a novel Ollusvirus, provisionally named "Rice thrips ollusvirus 1" (RTOV1), was elucidated using transcriptome sequencing and the rapid amplification of cDNA ends (RACE). A homology search and phylogenetic tree analysis revealed that the newly identified virus is a member of the family Aliusviridae (order Jingchuvirales). The genome of RTOV1 contains four predicted open reading frames (ORFs), including a polymerase protein (L, 7590 nt), a glycoprotein (G, 4206 nt), a nucleocapsid protein (N, 2415 nt) and a small protein of unknown function (291 nt). All of the ORFs are encoded by the complementary genome, suggesting that the virus is a negative-stranded RNA virus. Phylogenetic analysis using polymerase sequences suggested that RTOV1 was closely related to ollusvirus 1. Deep small RNA sequencing analysis reveals a significant accumulation of small RNAs derived from RTOV1, indicating that the virus replicated in the insect. According to our understanding, this is the first report of an Ollusvirus identified in a member of the insect family Phlaeothripidae. The characterisation and discovery of RTOV1 is a significant contribution to the understanding of Ollusvirus diversity in insects.

2.
Chem Sci ; 15(17): 6552-6561, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699257

ABSTRACT

Mucin-related tumor-associated carbohydrate antigens (TACAs) are important and interesting targets for cancer vaccine therapy. However, efficient access to a library of mucin-related TACAs remains a challenging task. One of the key issues is the challenging construction of α-GalNAc linkages. Here, we report highly stereoselective α-glycosylation with GalN3N-phenyl trifluoroacetimidate donors, which features excellent yields, outstanding stereoselectivities, broad substrate scope and mild reaction conditions. This method is successfully applied to highly stereoselective synthesis of GalN3-α-O-Ser, which served as the common intermediate for collective synthesis of a wide range of TACAs including TN antigen, STN antigen, 2,6 STF antigen, 2,3 STF antigen, glycophorin and cores 1-8 mucin-type O-glycans. In particular, the rationale for this highly stereoselective α-glycosylation is provided for the first time using DFT calculations and mechanistic studies, highlighting the crucial roles of reagent combinations (TMSI and Ph3PO) and the H-bonding directing effect of the N3 group.

3.
Bioact Mater ; 37: 348-377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38694766

ABSTRACT

Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.

4.
Virol J ; 21(1): 117, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802935

ABSTRACT

BACKGROUND: Equine herpesvirus type 1 (EHV-1) is commonly associated with horse abortion. Currently, there are no reported cases of abortion resulting from EHV-1 infection in donkeys. RESULTS: This was the first survey-based study of Chinese donkeys. The presence of EHV-1 was identified by PCR. This survey was conducted in Chabuchar County, North Xinjiang, China, in 2020. A donkey EHV-1 strain (Chabuchar/2020) was successfully isolated in MDBK cells. Seventy-two of 100 donkey sera were able to neutralize the isolated EHV-1. Moreover, the ORF33 sequence of the donkey-origin EHV-1 Chabuchar/2020 strain showed high levels of similarity in both its nucleotide (99.7‒100%) and amino acid (99.5‒100%) sequences, with those of horse EHV-1 strains. EHV-1 Chabuchar/2020 showed significant consistency and was classified within cluster 1 of horse EHV-1 strains. Further, analysis of the expected ORF30 nucleotide sequence revealed that donkey EHV-1 strains contained guanine at position 2254, resulting in a change to aspartic acid at position 752 of the viral DNA polymerase. Therefore, these strains were classified as horse neuropathogenic strains. Lastly, a phylogenetic tree was constructed using the partial ORF68 nucleotide sequences, showing that the identified donkey EHV-1 strain and the EHV-1 strain found in aborted Yili horses in China comprised a novel independent VIII group. CONCLUSION: This study showed the first isolation and identification of EHV-1 as an etiological agent of abortions in donkeys. Further analysis of the ORF33, ORF30, and ORF68 sequences indicated that the donkey EHV-1 contained the neuropathogenic genotype of strains in the VIII group. It is thus important to be aware of EHV-1 infection in the donkey population, even though the virus has only been identified in donkey abortions in China.


Subject(s)
Equidae , Herpesviridae Infections , Herpesvirus 1, Equid , Lung , Phylogeny , Animals , Equidae/virology , Herpesvirus 1, Equid/isolation & purification , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/classification , China , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Lung/virology , Aborted Fetus/virology , Female , DNA, Viral/genetics , Open Reading Frames , Sequence Analysis, DNA , Pregnancy , Polymerase Chain Reaction
5.
Nat Commun ; 15(1): 4317, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773086

ABSTRACT

Transition-metal catalyzed allylic substitution reactions of alkenes are among the most efficient methods for synthesizing diene compounds, driven by the inherent preference for an inner-sphere mechanism. Here, we present a demonstration of an outer-sphere mechanism in Rh-catalyzed allylic substitution reaction of simple alkenes using gem-difluorinated cyclopropanes as allyl surrogates. This unconventional mechanism offers an opportunity for the fluorine recycling of gem-difluorinated cyclopropanes via C - F bond cleavage/reformation, ultimately delivering allylic carbofluorination products. The developed method tolerates a wide range of simple alkenes, providing access to secondary, tertiary fluorides and gem-difluorides with 100% atom economy. DFT calculations reveal that the C - C bond formation goes through an unusual outer-sphere nucleophilic substitution of the alkenes to the allyl-Rh species instead of migration insertion, and the generated carbon cation then forms the C - F bond with tetrafluoroborate as a fluoride shuttle.

6.
Cell Metab ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38703762

ABSTRACT

The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.

7.
Nat Mater ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769206

ABSTRACT

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2648-2653, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812165

ABSTRACT

Chronic prostatitis/chronic pelvic pain syndrome(CP/CPPS) is a common urological disease with complex etiology. The treatment effect of western medicine is not satisfactory, and the course of the disease is protracted, which brings great trouble to patients. Traditional Chinese medicine(TCM) has a variety of treatment methods based on syndrome differentiation and treatment, including internal treatment with TCM, acupuncture and massage, and other external treatment methods for comprehensive treatment, with significant effect. This study summarized the etiology and pathogenesis of CP/CPPS and found that western medicine cannot fully explain the etiology and pathogenesis of CP/CPPS. It was believed that CP/CPPS was mainly related to many factors such as special pathogen infection, voiding dysfunction, mental and psychological abnormalities, neuroendocrine abnormalities, immune abnormalities, excessive oxidative stress, pelvic diseases, and heredity. TCM believed that CP/CPPS was caused by damp heat, blood stasis, Qi stagnation, and poisoning and was closely related to the organs of the liver, spleen, kidney, lung, stomach, bladder, and meridians of Chong and Ren channels and three yin channels of the foot. In the treatment of TCM, multiple comprehensive treatment plans are currently used, including internal treatment with TCM(decoction, proprietary Chinese medicine, and unique therapies of famous doctors), acupuncture and massage treatment, and other external treatment methods(rectal administration, topical application of TCM, and ear acupoint pressure). Comprehensive regulation has significant clinical efficacy and prominent characteristics of TCM, and it is worth clinical promotion. This study aims to provide a reference for clinical prevention and treatment of CP/CPPS and points out potential directions for future research in this field.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Pelvic Pain , Prostatitis , Humans , Prostatitis/therapy , Prostatitis/drug therapy , Pelvic Pain/therapy , Pelvic Pain/drug therapy , Male , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Chronic Disease , Acupuncture Therapy
9.
ACS Appl Mater Interfaces ; 16(21): 27831-27840, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757708

ABSTRACT

Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.

10.
Magn Reson Imaging ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38579973

ABSTRACT

BACKGROUND: Dural sinus wall thickness and wall enhancement index (WEI) of dural arteriovenous fistulae (DAVFs) have not been well characterized. This study aimed to measure the sinus wall thickness and WEI by using magnetic resonance vessel wall imaging (MR-VWI). METHODS: A total 27 DAVF patients and 30 normal healthy individuals were enrolled in this study. All participants were scanned by a 3 T MR scanner with the black blood sequence. The wall thickness and the WEI of the great cerebral vein, the intracranial main dural sinuses with DAVFs, and the contralateral sinuses were measured by two independent neuroradiologists. RESULTS: The DAVF-affected sinuses had significantly thicker walls (2.277 ±â€¯0.311 mm vs. 1.446 ±â€¯0.188 mm, P < 0.001) and significantly higher WEI (2.253 ±â€¯0.462 vs. 1.173 ±â€¯0.418, P < 0.001) compared to the contralateral ones. They also had significantly thicker walls (2.277 ±â€¯0.311 mm vs. 1.643 ±â€¯0.173 mm, P < 0.001) and significantly higher WEI (2.253 ±â€¯0.462 vs. 1.124 ±â€¯0.254, P < 0.001) compared to the normal controls. Neither the sinus wall thickness (r = -0.317, P = 0.107) nor the WEI (r = 0.019, P = 0.923) was significantly correlated with the Cognard types in DAVF patients. The WEI of the DAVF draining vein was significantly higher compared to the static venous wall (1.972 ±â€¯0.629 vs. 0.532 ±â€¯0.243, P < 0.001). CONCLUSION: T1-CUBE MRI is useful in measuring sinus all thickness and WEI of DAVFs, providing a new method for diagnosing this disease.

11.
BMC Microbiol ; 24(1): 113, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575881

ABSTRACT

BACKGROUND: Cryptosporidium is a highly pathogenic parasite responsible for diarrhea in children worldwide. Here, the epidemiological status and genetic characteristics of Cryptosporidium in children with or without diarrhea were investigated with tracking of potential sources in Wenzhou City, China. METHODS: A total of 1032 children were recruited, 684 of whom had diarrhea and 348 without, from Yuying Children's Hospital in Wenzhou, China. Samples of stool were collected from each participant, followed by extraction of DNA, genotyping, and molecular identification of Cryptosporidium species and subtypes. RESULTS: Twenty-two of the 1032 (2.1%) children were infected with Cryptosporidium spp. with 2.5% (17/684) and 1.4% (5/348) in diarrhoeic and asymptomatic children, respectively. Four Cryptosporidium species were identified, including C. parvum (68.2%; 15/22), C. felis (13.6%; 3/22), C. viatorum (9.1%; 2/22), and C. baileyi (9.1%; 2/22). Two C. parvum subtypes named IIdA19G1 (n = 14) and IInA10 (n = 1), and one each of C. felis (XIXa) and C. viatorum (XVaA3g) subtype was found as well. CONCLUSIONS: This is the first research that identified Cryptosporidium in children of Wenzhou, China, using PCR. Identification of zoonotic C. parvum, C. felis, C. viatorum, and their subtypes indicate potential cross-species transmission of Cryptosporidium between children and animals. Additionally, the presence of C. baileyi in children suggests that this species has a wider host range than previously believed and that it possesses the capacity to infect humans.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Child , Animals , Humans , Cryptosporidium/genetics , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Diarrhea/epidemiology , China/epidemiology , Feces/parasitology , Genotype , Probability
12.
Nat Commun ; 15(1): 3086, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600063

ABSTRACT

Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.


Subject(s)
Visual Prosthesis , Bionics , Retina , Vision, Ocular , Visual Perception
13.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657063

ABSTRACT

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Subject(s)
Animal Migration , Genomics , Wind , Animals , Genomics/methods , Hemiptera/genetics , Genome, Insect , Genetics, Population
14.
Angew Chem Int Ed Engl ; : e202405838, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647574

ABSTRACT

Transition-metal-catalyzed [4+4] cycloaddition leading to cyclooctanoids has centered on dimerization between 1,3-diene-type substrates. Herein, we describe a [4σ+4π-1] and [4σ+4π] cycloaddition strategy to access 7/8-membered fused carbocycles through rhodium-catalyzed coupling between the 4σ-donor (benzocyclobutenones) and pendant diene (4π) motifs. The two pathways can be controlled by adjusting the solvated CO concentration. A broad range (>40 examples) of 5-6-7 and 5-6-8 polyfused carbocycles was obtained in good yields (up to 90 %). DFT calculations, kinetic monitoring and 13C-labeling experiments were carried out, suggesting a plausible mechanism. Notably, one 5-6-7 tricycle was found to be a very rare, potent, and selective ligand for the liver X receptor ß (KD=0.64 µM), which is a potential therapeutic target for cholesterol-metabolism-related fatal diseases.

15.
Angew Chem Int Ed Engl ; : e202400751, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634352

ABSTRACT

Developing efficient and anti-corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal-support interaction (RMSI) as ORR catalysts, using Ni-doped cubic ZrO2 (Ni/ZrO2) supported L10-PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10-PtNi-Ni/ZrO2-RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half-cell and exceptional PEMFC performance (MA=0.76 A mgPt -1 at 0.9 V, peak power density=1.52/0.92 W cm-2 in H2-O2/-air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt-based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10-PtNi-Ni/ZrO2-RMSI requires a lower energetic barrier for ORR than L10-PtNi-Ni/ZrO2 (direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10-PtNi-Ni/ZrO2-RMSI compared to L10-PtNi-C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.

16.
Chemistry ; : e202400629, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594211

ABSTRACT

Herein, we synthesized two donor-acceptor (D-A) type small organic molecules with self-assembly properties, namely MPA-BT-BA and MPA-2FBT-BA, both containing a low acidity anchoring group, benzoic acid. After systematically investigation, it is found that, with the fluorination, the MPA-2FBT-BA demonstrates a lower highest occupied molecular orbital (HOMO) energy level, higher hole mobility, higher hydrophobicity and stronger interaction with the perovskite layer than that of MPA-BT-BA. As a result, the device based-on MPA-2FBT-BA displays a better crystallization and morphology of perovskite layer with larger grain size and less non-radiative recombination. Consequently, the device using MPA-2FBT-BA as hole transport material achieved the power conversion efficiency (PCE) of 20.32 % and remarkable stability. After being kept in an N2 glove box for 116 days, the unsealed PSCs' device retained 93 % of its initial PCE. Even exposed to air with a relative humidity range of 30±5 % for 43 days, its PCE remained above 91 % of its initial condition. This study highlights the vital importance of the fluorination strategy combined with a low acidity anchoring group in SAMs, offering a pathway to achieve efficient and stable PSCs.

17.
Chemosphere ; 358: 142175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679173

ABSTRACT

Carbamazepine (CBZ) is a widely used anticonvulsant drug that has been detected in aquatic environments. This study investigated the toxicity of its by-products (CBZ-BPs), which may surpass CBZ. Unlike the previous studies, this study offered a more systematic approach to identifying toxic BPs and inferring degradation pathways. Furthermore, quadrupole time-of-flight (QTOF) and density functional theory (DFT) calculations were employed to analyze CBZ-BP structures and degradation pathways. Evaluation of total organic carbon (TOC) and total nitrogen (TN) mineralization rates, revealed carbon (C) greater susceptibility to mineralization compared with nitrogen (N). Furthermore, three rules were established for CBZ decarbonization and N removal during degradation, observing the transformation of aromatic compounds into aliphatic hydrocarbons and stable N-containing organic matter over time. Five potentially highly toxic BPs were screened from 14 identified BPs, with toxicity predictions guiding the selection of commercial standards for quantification and true toxicity testing. Additionally, BP207 emerged as the most toxic, supported by the predictive toxicity accumulation model (PTAM). Notably, highly toxic BPs feature an acridine structure, indicating its significant contribution to toxicity. These findings offered valuable insights into the degradation mechanisms of emerging contaminants and the biosafety of aquatic environments during deep oxidation.


Subject(s)
Carbamazepine , Hydrogen Peroxide , Water Pollutants, Chemical , Carbamazepine/toxicity , Carbamazepine/chemistry , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/chemistry , Ultraviolet Rays , Nitrogen , Anticonvulsants/toxicity , Anticonvulsants/chemistry
18.
iScience ; 27(4): 109456, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38591005

ABSTRACT

Spermiogenesis defines the final phase of male germ cell differentiation. While multiple deubiquitinating enzymes have been linked to spermiogenesis, the impacts of deubiquitination on spermiogenesis remain poorly characterized. Here, we investigated the function of UAF1 in mouse spermiogenesis. We selectively deleted Uaf1 in premeiotic germ cells using the Stra8-Cre knock-in mouse strain (Uaf1 sKO), and found that Uaf1 is essential for spermiogenesis and male fertility. Further, UAF1 interacts and colocalizes with USP1 in the testes. Conditional knockout of Uaf1 in testes results in disturbed protein levels and localization of USP1, suggesting that UAF1 regulates spermiogenesis through the function of the deubiquitinating enzyme USP1. Using tandem mass tag-based proteomics, we identified that conditional knockout of Uaf1 in the testes results in reduced levels of proteins that are essential for spermiogenesis. Thus, we conclude that the UAF1/USP1 deubiquitinase complex is essential for normal spermiogenesis by regulating the levels of spermiogenesis-related proteins.

19.
J Transl Med ; 22(1): 240, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443933

ABSTRACT

BACKGROUND: Mitochondria produce adenosine triphosphate through respiratory activities to power sperm differentiation and motility, and decreased mitochondrial respiratory activity can result in poor sperm motility and asthenospermia. The mitochondrial sheath is a component of the mid-piece of the sperm flagellum, and dysfunction of the sheath can reduce sperm motility and cause male infertility. The membrane occupation and recognition nexus-motif protein 2 (MORN2) is testis enriched in mice, and the MORN motif was reported to play a role in the regulation of bioelectrical signal homeostasis in cardiomyocytes. METHODS: We generated Morn2-/- mice using CRISPR/Cas9 and evaluated the potential functions of MORN2 in spermiogenesis through histological analysis, fertility examination, RT-PCR, CASA, immunofluorescence, TUNEL, electron microscopy analysis, mitochondrial energy metabolism analysis, etc. RESULTS: The Morn2-/- mice were infertile, and their sperm showed severe motility defects. Morn2-/- sperm also had abnormal morphology characterized by bent heads, aberrant mitochondrial sheath formation, lower mitochondrial membrane potential, higher levels of reactive oxygen species, and decreased mitochondrial respiratory activity. CONCLUSIONS: Our study demonstrates that MORN2 is essential for male fertility and indicates that MORN2 functions in mitochondrial sheath formation and regulates mitochondrial respiratory activity.


Subject(s)
Semen , Sperm Motility , Animals , Male , Mice , Energy Metabolism , Fertility , Mitochondria
20.
Natl Sci Rev ; 11(3): nwad328, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449877

ABSTRACT

The reprogramming of parental epigenomes in human early embryos remains elusive. To what extent the characteristics of parental epigenomes are conserved between humans and mice is currently unknown. Here, we mapped parental haploid epigenomes using human parthenogenetic and androgenetic embryos. Human embryos have a larger portion of genome with parentally specific epigenetic states than mouse embryos. The allelic patterns of epigenetic states for orthologous regions are not conserved between humans and mice. Nevertheless, it is conserved that maternal DNA methylation and paternal H3K27me3 are associated with the repression of two alleles in humans and mice. In addition, for DNA-methylation-dependent imprinting, we report 19 novel imprinted genes and their associated germline differentially methylated regions. Unlike in mice, H3K27me3-dependent imprinting is not observed in human early embryos. Collectively, allele-specific epigenomic reprogramming is different in humans and mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...