Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 18(1): 320, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986317

ABSTRACT

BACKGROUND: The application of plant extracts has received great interest for the treatment of bovine mastitis. Isoliquiritigenin (ISL) is a rich dietary flavonoid that has significant antioxidative, anti-inflammatory and anticancer activities. This study was conducted to explore the protective efficacy and related mechanism of ISL against lipopolysaccharide (LPS)-stimulated oxidation and inflammation in bovine mammary epithelial cells (MAC-T) by in vitro experiments. RESULTS: Real-time PCR and ELISA assays indicated that ISL treatment at 2.5, 5 and 10 µg/mL significantly reduced the mRNA and protein expression of the oxidative indicators cyclooxygenase-2 and inducible nitric oxide synthase (P < 0.01), and of the inflammatory cytokines interleukin-6 (P < 0.05), interleukin-1ß (P < 0.01) and tumor necrosis factor-α (P < 0.01) in LPS-stimulated MAC-T cells. Moreover, Western blotting and immunofluorescence tests indicated that the phosphorylation levels of nuclear factor kappa (NF-κB) p65 and the inhibitor of NF-κB were significantly decreased by ISL treatment, thus blocking the nuclear transfer of NF-κB p65. In addition, ISL attenuated the phosphorylation levels of p38, extracellular signal-regulated kinase and c-jun NH2 terminal kinase. CONCLUSIONS: Our data demonstrated that ISL downregulated the LPS-induced inflammatory response in MAC-T cells. The anti-inflammatory and antioxidative activity of ISL involves the NF-κB and MAPK cascades.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Anti-Inflammatory Agents/pharmacology , Cattle , Chalcones , Female , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , T-Lymphocytes
2.
J Dairy Sci ; 104(12): 12925-12938, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34593235

ABSTRACT

Epicatechin (EC) has significant antiinflammation, antioxidation, and anticancer activities. It also provides a new alternative treatment for mastitis, which can result in great economic losses in the dairy industry if left untreated. The purpose of this study was to investigate the anti-inflammatory effects of EC on mastitis and the underlying mechanism using in vivo and in vitro systems. The use of ELISA and immunohistochemistry assays showed that EC treatment at 1.5, 7.5, 15, and 30 mg/mL decreased protein expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase; inflammatory cytokines, which were composed of IL-1ß, TNF-α, and IL-6 in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cell line (MAC-T); and mouse mammary gland, together with reduced filtration of T lymphocytes in the mouse mammary gland. Furthermore, EC treatment reduced LPS-induced phosphorylation levels of p65 and inhibitor of NF-κB, and blocked nuclear translocation of p65 as revealed by western blot and immunofluorescence test in MAC-T cells and the mouse mammary gland. Epicatechin also attenuated LPS-induced phosphorylation levels of mitogen-activated protein kinase members (i.e., p38, c-Jun N-terminal kinase 1/2 and extracellular regulated protein kinases 1/2). Using RNA-seq and tandem mass tag analyses, upregulation of TMEM35A and TMPO proteins was disclosed in MAC-T cells cotreated with LPS and EC. Although clustered regularly interspaced short palindromic repeats/Cas9-based knockdown of TMEM35A and TMPO attenuated abundance of phosphorylated (p)-p65, p-p38, TNF-α, and iNOS, overexpression of TMEM35A reversed EC-mediated effects in TMPO knockdown cells. Moreover, interaction between TMEM35A and TMPO was detected using the co-immunoprecipitation method. In conclusion, our data demonstrated that EC inhibited LPS-induced inflammatory response in MAC-T cells and the mouse mammary gland. Importantly, TMEM35A mediated the transmembrane transport of EC, and the interaction between TMEM35A and TMPO inhibited MAPK and NF-κB pathways.


Subject(s)
Catechin , Cattle Diseases , Membrane Proteins , Rodent Diseases , Thymopoietins , Animals , Anti-Inflammatory Agents/therapeutic use , Catechin/pharmacology , Cattle , Cyclic N-Oxides , Epithelial Cells/metabolism , Female , Inflammation/drug therapy , Inflammation/veterinary , Lipopolysaccharides , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Thymopoietins/genetics , Thymopoietins/metabolism
3.
J Microbiol Biotechnol ; 30(10): 1458-1466, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32876071

ABSTRACT

Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 µg/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1ß (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPSinduced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Lipopolysaccharides/adverse effects , Proanthocyanidins/pharmacology , T-Lymphocytes/drug effects , Animals , Cattle , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Inflammation/therapy , Interleukin-1beta/metabolism , Interleukin-6/metabolism , MAP Kinase Signaling System , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...