Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5091, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429415

ABSTRACT

Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.


Subject(s)
Brain/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Mice, Neurologic Mutants/metabolism , Proto-Oncogene Proteins/metabolism , Remyelination/physiology , 5-Methylcytosine/analogs & derivatives , Animals , Cell Cycle , Cell Differentiation , DNA Methylation , DNA-Binding Proteins/genetics , Genome , Mice , Mice, Knockout , Oligodendroglia/metabolism , Organogenesis , Proto-Oncogene Proteins/genetics
2.
Eur J Neurosci ; 49(11): 1371-1387, 2019 06.
Article in English | MEDLINE | ID: mdl-30633380

ABSTRACT

Myelin is lipid-rich structure that is necessary to avoid leakage of electric signals and to ensure saltatory impulse conduction along axons. Oligodendrocytes in central nervous system (CNS) and Schwann cells in peripheral nervous system (PNS) are responsible for myelin formation. Axonal demyelination after injury or diseases greatly impairs normal nervous system function. Therefore, understanding how the myelination process is programmed, coordinated, and maintained is crucial for developing therapeutic strategies for remyelination in the nervous system. Epigenetic mechanisms have been recognized as a fundamental contributor in this process. In recent years, histone modification, DNA modification, ATP-dependent chromatin remodeling, and non-coding RNA modulation are very active area of investigation. We will present a conceptual framework that integrates crucial epigenetic mechanisms with the regulation of oligodendrocyte and Schwann cell lineage progression during development and myelin degeneration in pathological conditions. It is anticipated that a refined understanding of the molecular basis of myelination will aid in the development of treatment strategies for debilitating disorders that involve demyelination, such as multiple sclerosis in the CNS and neuropathies in the PNS.


Subject(s)
Brain/metabolism , Demyelinating Diseases/genetics , Epigenesis, Genetic , Myelin Sheath/genetics , Animals , Brain/pathology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Myelin Sheath/metabolism , Myelin Sheath/pathology
3.
J Clin Virol ; 37(4): 305-12, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16971176

ABSTRACT

BACKGROUND: Current regulations and recommendations proposed for the production of vaccines in continuous cell lines of any origin demand that these be free of exogenous viruses, particularly retroviruses. Recently, the ultra-sensitive product-enhanced reverse transcriptase (PERT) assay can be used to detect minute of reverse transcriptase (RTase) in single retroviral particle and is 10(6) times more sensitive than the conventional RTase assays. However, coincidental with this increase in sensitivity is an increase in false-positive reactions derived from contaminating cellular DNA polymerases, which are known to have RTase-like activities. OBJECTIVES: To develop a modified single-tube one-step PERT (mSTOS-PERT) assay with improvements on decreasing significantly the level of false-positive reactions, and to evaluate the mSTOS-PERT assay for sensitivity and specificity. STUDY DESIGN: Ampliwaxtrade mark was used to compartmentalize the reverse transcription (RT) and PCR step in the same micro-tube with more efficiency and reproducibility, while maintaining the high sensitivity. The DNA amplification products were separated by 2% agarose gel electrophoresis, and then analyzed by non-isotopic Southern blot hybridization. A wide variety of cell lines used in biologicals production were detected to validate the improved mSTOS-PERT assay. RESULTS: The detection limit for the mSTOS-PERT assay was at least 10(-9)U, when using AMV-RTase as a positive control. Furthermore, heparin involvement in the RT step can eliminate completely the false-positive PERT signals which are exhibited by cellular polymerases such as DNA-dependent DNA polymerase alpha, gamma released by cell death. Most mammalian cells (MRC-5, Vero, WISH, 2BS, RK-13, MDCK, etc.) are PERT-negative in cell supernatants. Some PERT-positive signals in cell lysates were found to be introduced by the cellular DNA polymerases and could be inhibited specifically by heparin. Chick cells derived from either chick embryo fibroblasts (CEF) or allantoic fluid from SPF embryonated eggs, murine hybridoma cell SP2/0, etc., contained authentic RTase activities, which could not be inactivated by heparin. CONCLUSIONS: The improved mSTOS-PERT assay described here may distinguish the genuine RTase activity from cellular polymerases with high sensitivity and specificity, and is rapid and easy to perform to screen for the possible contamination of minute retroviruses in the cell substrates used in vaccine production.


Subject(s)
Heparin/pharmacology , Nucleic Acid Synthesis Inhibitors , Polymerase Chain Reaction/methods , RNA-Directed DNA Polymerase/analysis , Retroviridae/enzymology , Retroviridae/isolation & purification , Cell Line , DNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/metabolism , Retroviridae/genetics , Sensitivity and Specificity , Templates, Genetic , Viral Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...