Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(1): 81-92, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216460

ABSTRACT

To clarify the characteristics and source apportionment of the VOCs initial mixing ratio in Beijing in summer, continuous monitoring of VOCs was conducted in the Beijing urban area from May to August 2022, and the initial mixing ratio was calculated using the photochemical ratio method. The results showed that:① during the study period, initial φ(TVOCs) in the Beijing urban area were (30.0 ±11.5)×10-9, in which the proportion of VOCs and alkanes containing oxygen reached 34.2% and 33.2%, respectively. The species with high volume fractions were low carbon substances such as acetone, ethane, acetaldehyde, and propane. ② The initial TVOCs mixing ratio in Beijing showed a slightly unimodal trend, reaching the peak at 11:00 and slightly decreasing in the afternoon. ③ Isoprene, acetaldehyde, n-butanal, and ethylene were the major contributors to the generation of O3, whereas toluene, isoprene, m-paraxylene, and ethylbenzene were the major contributors to the generation of secondary organic aerosols. ④ Based on the initial mixing ratio of PMF analysis, it was found that aging background and secondary sources (30%) contributed the most to VOCs in Beijing, and motor vehicle sources (25%) were the main primary human sources. In addition, solvent and fuel volatile sources contributed 16%, combustion sources contributed 11%, industrial process sources contributed 9%, and natural sources contributed 9%. ⑤ The anthropogenic sources of Beijing were mainly from the eastern and southern regions, whereas the natural sources were from the western and northwestern regions. This research showed that vehicle emissions should be further reduced, and regional joint prevention and control to reduce VOCs in the whole region is an effective means to control VOCs in Beijing.

2.
Small ; 20(16): e2306989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032164

ABSTRACT

Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.

3.
Small ; 19(49): e2303127, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37625019

ABSTRACT

Organic-inorganic hybrid lead halide perovskites (OLHPs), represented by (CH3 NH3 )PbI3 , are one of the research focus due to their exceptional performance in optoelectronic applications, and ferroelastic domain walls are benign to their charge carrier transport that is confirmed recently. Among them, the 1D OLHPs feature better stability against desorption and moisture, but related 1D ones possessing ferroelasticity are rarely investigated and reported so far. In this work, the 1D ferroelastic semiconductor (N-iodomethyl-N-methyl-morpholinium)PbI3 ((IDMML)PbI3 ) is prepared successfully by introducing successively halogenate atoms from Cl, Br to I into the organic cation of the prototype (N,N-dimethylmorpholinium)PbI3 ((DMML)PbI3 ). Notably, (IDMML)PbI3 shows the narrow bandgap energy (≈2.34 eV) according to the ultraviolet-visible absorption spectrum and the theoretical calculation, and possesses the evident photoconductive characteristic with the on/off ratio of current of ≈50 under the 405 nm light irradiation. This work provides a new case for the ferroelastic OLHPs and will inspire intriguing research in the field of optoelectronic.

4.
Dalton Trans ; 52(30): 10415-10422, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37436427

ABSTRACT

The multifunctional tuning of solid-state dielectric switches constructed from organic-inorganic hybrid materials (OIHMs) has received great attention. In particular, molecular ferroelastics with dielectric phase transitions have considerable potential in the optical and electrical fields owing to their adjustable structures and physical features. However, it remains a challenge to effectively design ferroelastics with high phase transition temperature (Tc). We used [TTMA]2CdI4 (TTMA = tetramethylammonium, 1) as a template to continuously increase the molecular weight and change the structure of the hybrid material by modifying and extending the alkane chain in the cation. Therefore, a series of OIHMs were eventually developed: [TMEA]2CdI4 (TMEA = trimethylethylammonium, 2), [TMPA]2CdI4 (TMPA = trimethylpropylammonium, 3), and [TMIPA]2CdI4 (TMIPA = trimethyliso-propylammonium, 4). Among them, the Tc of ferroelastic 3 increased up to 387 K. DSC and temperature-related dielectric constant tests prove the occurrence of the phase transition for 1, 2, and 3. The structures further indicate that the phase transition is caused by the order-disorder cation motion. The extension of the alkyl chain greatly increases Tc and endows 3 with ferroelasticity at room temperature.

5.
Nanoscale ; 15(6): 2882-2890, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36691812

ABSTRACT

Weyl semimetals are a class of gapless electronic excitation topological quantum materials upon breaking time-reversal or inversion symmetry. Here, we demonstrate the existence of the Weyl semimetal state in the non-centrosymmetric twisted-brick phase MoTe theoretically. The topological properties and strain effects of MoTe have been systematically studied based on first-principles calculations and the Wannier-based tight-binding method. In the absence of spin-orbit coupling (SOC), MoTe exhibits gapless nodal loop states related to the mirror reflection symmetry. When the SOC is turned on, the two nodal loops split into 22 pairs of Weyl points (WPs) with opposite chirality. When the effect of uniaxial (εz) strain is taken into account, the Weyl semimetal phase of MoTe shows great robustness and striking tunable topological strength. In particular, the total number of WPs changes significantly under strain. MoTe under +4% and +8% uniaxial strains have only four pairs of WPs with a relatively large separation in momentum space. These results show that MoTe under weak strain is a promising partly ideal type I Weyl semimetal candidate, while the isolog structure WTe both opens a direct gap with and without SOC, showing a compensated semimetal state.

6.
Hepatobiliary Pancreat Dis Int ; 22(1): 64-71, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36151023

ABSTRACT

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a life-threatening syndrome defined as acute decompensation in patients with chronic liver disease. Liver transplantation (LT) is the most effective treatment. We aimed to assess the impact of cirrhosis-related complications pre-LT on the posttransplant prognosis of patients with ACLF. METHODS: This was an observational cohort study conducted between January 2018 and December 2020. Clinical characteristics, cirrhosis-related complications at LT and patient survival post-LT were collected. All liver recipients with ACLF were followed for 1 year post-LT. RESULTS: A total of 212 LT recipients with ACLF were enrolled, including 75 (35.4%) patients with ACLF-1, 64 (30.2%) with ACLF-2, and 73 (34.4%) with ACLF-3. The median waiting time for LT was 11 (4-24) days. The most prevalent cirrhosis-related complication was ascites (78.8%), followed by hepatic encephalopathy (57.1%), bacterial infections (48.1%), hepatorenal syndrome (22.2%) and gastrointestinal bleeding (11.3%). Survival analyses showed that patients with complications at LT had a significantly lower survival probability at both 3 months and 1 year after LT than those without complications (all P < 0.05). A simplified model was developed by assigning one point to each complication: transplantation for ACLF with cirrhosis-related complication (TACC) model. Risk stratification of TACC model identified 3 strata (≥ 4, = 3, and ≤ 2) with high, median and low risk of death after LT (P < 0.001). Moreover, the TACC model showed a comparable ability for predicting the outcome post-LT to the other four prognostic models (chronic liver failure-consortium ACLF score, Chinese Group on the Study of Severe Hepatitis B-ACLF score, model for end-stage liver disease score and Child-Turcotte-Pugh score). CONCLUSIONS: The presence of cirrhosis-related complications pre-LT increases the risk of death post-LT in patients with ACLF. The TACC model based on the number of cirrhosis-related complications pre-LT could stratify posttransplant survival, which might help to determine transplant timing for ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , End Stage Liver Disease , Liver Transplantation , Humans , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/surgery , End Stage Liver Disease/complications , Severity of Illness Index , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/surgery , Liver Transplantation/adverse effects , Prognosis
7.
Dalton Trans ; 51(38): 14408-14412, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36111966

ABSTRACT

A new multi-functional organic-inorganic hybrid compound was successfully obtained by regulating metal halides. Apart from excellent luminescence properties, in particular, the introduction of a Mn halide successfully achieved a dual-switchable dielectric property, which could lead to very interesting exploration in sensors.

8.
Chemistry ; 28(69): e202202533, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36082618

ABSTRACT

Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.


Subject(s)
Semiconductors , Phase Transition
9.
Chem Asian J ; 17(21): e202200791, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36000797

ABSTRACT

Organic-inorganic hybrid phase transition materials with switchable properties have important potential applications in smart devices such as dielectric switches and storage. Nevertheless, it remains challenging to modify molecular structures efficiently to obtain materials simultaneously possessing multiple responsive properties. Herein, different from ordinary halogen substitutions in Metal Halide, we report a halogen regulation design of organic molecular strategy: (ASD)2 MnBr4 (ASD=5-azonia-spiro [4.5] decane) to (CASD)2 MnBr4 (CASD=8-chloro-5-azonia-spiro [4.5] decane). After organic molecular halogen regulation, the SHG response was excited and the dielectric phase transition temperature (Tc ) has also been greatly improved. Furthermore, under the irradiation of UV lamp, both showed green light with quantum yields above 50%. This work is of great significance for further exploration of multifunctional molecular switch materials through halogen modification strategies.


Subject(s)
Chlorine
10.
Chemistry ; 28(59): e202201005, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35790034

ABSTRACT

Molecular ferroelastics have received particular attention for potential applications in mechanical switches, shape memory, energy conversion, information processing, and solar cells, by taking advantages of their low-cost, light-weight, easy preparation, and mechanical flexibility. The unique structures of organic-inorganic hybrid perovskites have been considered to be a design platform for symmetry-breaking-associated order-disorder in lattice, thereby possessing great potential for ferroelastic phase transition. Herein, we review the research progress of organic-inorganic hybrid perovskite ferroelastics in recent years, focusing on the crystal structures, dimensions, phase transitions and ferroelastic properties. In view of the few reports on molecular-based hybrid ferroelastics, we look forward to the structural design strategies of molecular ferroelastic materials, as well as the opportunities and challenges faced by molecular-based hybrid ferroelastic materials in the future. This review will have positive guiding significance for the synthesis and future exploration of organic-inorganic hybrid molecular ferroelastics.

11.
Chemistry ; 28(40): e202200579, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35467772

ABSTRACT

Hybrid organic-inorganic perovskite (HOIP) have received tremendous scientific attention because of the phase transition and photovoltaic properties. However, achieving the special perovskite structure with both two-step dielectric response and luminescence characteristics is rarely reported. Herein, we report an organic-inorganic hybrid perovskite, [(BA)2 ⋅ PbI4 ] (Compound 1, BA=n-butylamine) by introducing flexible organic cations (HBA+ ), with direct mid-band gap as 2.28 eV. Interestingly, this material exhibits two-step reversible dielectric response at 350 K and 460 K (in heating process), respectively. Besides, the photoluminescence was found: it emits charming green light under 365 nm lamp (Photoluminescence quantum yield is 9.52 %). The outstanding two-step dielectric response and luminescence characteristics of this compound might pave the way for the application of dielectric and ferroelectric functional materials in temperature sensors and mechanical switches.

12.
Dalton Trans ; 51(5): 2005-2011, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35029614

ABSTRACT

Multifunctional switching materials show great potential for applications in sensors, smart switches, and other fields due to their ability to integrate different physical channels in one single device. However, multifunctional responsive materials with multiple switching and luminescence properties have rarely been reported. Here, we report three organic-inorganic hybrids: [TMAA]2[CoCl4] (compound 1), [TMAA]2[CdBr4] (compound 2) and [TMAA]2[MnCl4] (compound 3). Compound 1 and compound 2 undergo two reversible phase transitions at high temperature (328.95/359.25 K and 350.45/393.15 K, respectively). Since the inorganic skeleton has a strong influence on the luminescence properties of such structured substances, Cd and Co were replaced with Mn, after which compound 3 was obtained as expected. The above strategy triggered bright green luminescence with a quantum yield of 35.19%, and significantly increased the phase transition temperature of compound 3 to above 400 K. The above results show that the regulation of the inorganic skeleton provides a new strategy for researchers to develop dual phase change/luminous materials.

13.
Med Gas Res ; 12(3): 73-76, 2022.
Article in English | MEDLINE | ID: mdl-34854416

ABSTRACT

Cerebral ischemia/reperfusion injury is an important factor leading to poor prognosis in ischemic stroke patients. Therefore, it is particularly important to find effective remedial measures to promote the health of patients to return to society. Isoflurane is a safe and reliable anesthetic gas with a long history of clinical application. In recent years, its protection function to human body has been widely recognized, and nowadays isoflurane for cerebral protection has been widely studied, and the stable effect of isoflurane has satisfied many researchers. Basic studies have shown that isoflurane's protection of brain tissue after ischemia/reperfusion involves a variety of signaling pathways and effector molecules. Even though many signaling pathways have been described, more and more studies focus on exploring their mechanisms of action, in order to provide strong evidence for clinical application. This could prompt the introduction of isoflurane therapy to clinical patients as soon as possible. In this paper, several confirmed signaling pathways will be reviewed to find possible strategies for clinical treatment.


Subject(s)
Anesthetics, Inhalation , Brain Ischemia , Isoflurane , Reperfusion Injury , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Humans , Isoflurane/pharmacology , Isoflurane/therapeutic use , Reperfusion Injury/drug therapy , Signal Transduction
14.
Phys Chem Chem Phys ; 23(40): 23196-23202, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34622258

ABSTRACT

Ideal topological materials are those stable materials with less nontrivial band crossing near the Fermi surface and a long Fermi arc. By means of first-principles calculations, here we present that the 3D monochalcogenide molybdenum telluride (Pm-MoTe) without an inversion center shows a type-II Weyl semimetal (WSM) phase which cannot checked by symmetry index method. A total of eight Weyl points (WPs) are found in different quadrants of the Brillouin zone (BZ) of Pm-MoTe, which guarantee a long Fermi arc. The WSM phase is robust against the spin-orbit coupling (SOC) effect because of mirror symmetry and time reversal symmetry. It is also found that a topological phase transition can be tuned by strain. For different types of strain, the number of WPs can be effectively modulated to a minimum number, and their energies could be closer to Fermi level. These findings propose a promising material candidate that partly satisfies the ideal WSM criteria and extends the potential applications of the tunable topological phase.

15.
Infect Dis Poverty ; 10(1): 43, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33771232

ABSTRACT

BACKGROUND: Several studies have assessed the role of gut microbiota in various cirrhosis etiologies, however, none has done so in the context of Schistosoma japonicum infection in humans. We, therefore, sought to determine whether gut microbiota is associated with S. japonicum infection-induced liver cirrhosis. METHODS: From December 2017 to November 2019, 24 patients with S. japonicum infection-induced liver cirrhosis, as well as 25 age- and sex-matched controls from the Zhejiang Province, China, were enrolled. Fecal samples were collected and used for 16S rRNA gene sequencing (particularly, the hypervariable V4 region) using the Illumina MiSeq system. Wilcoxon Rank-Sum and PERMANOVA tests were used for analysis. RESULTS: Eight hundred and seven operational taxonomic units (OTUs) were detected, of which, 491 were common between the two groups, whereas 123 and 193 were unique to the control and cirrhosis groups, respectively. Observed species, Chao, ACE, Shannon, Simpson, and Good's coverage indexes, used for alpha diversity analysis, showed values of 173.4 ± 63.8, 197.7 ± 73.0, 196.3 ± 68.9, 2.96 ± 0.57, 0.13 ± 0.09, and 1.00 ± 0.00, respectively, in the control group and 154.0 ± 68.1, 178.6 ± 75.1, 179.9 ± 72.4, 2.68 ± 0.76, 0.19 ± 0.18, and 1.00 ± 0.00, respectively, in the cirrhosis group, with no significant differences observed between the groups. Beta diversity was evaluated by weighted UniFrac distances, with values of 0.40 ± 0.13 and 0.40 ± 0.11 in the control and cirrhosis groups, respectively (P > 0.05). PCA data also confirmed this similarity (P > 0.05). Meanwhile, the relative abundance of species belonging to the Bacilli class was higher in cirrhosis patients [median: 2.74%, interquartile range (IQR): 0.18-7.81%] than healthy individuals (median: 0.15%, IQR: 0.47-0.73%; P < 0.01), and that of Lactobacillales order was also higher in cirrhosis patients (median: 2.73%, IQR: 0.16-7.80%) than in healthy individuals (median: 0.12%, IQR: 0.03-0.70%; P < 0.05). CONCLUSIONS: Cumulatively, our results suggest that the gut microbiota of S. japonicum infection-induced liver cirrhosis patients is similar to that of healthy individuals, indicating that bacterial taxa cannot be used as non-invasive biomarkers for S. japonicum infection-induced liver cirrhosis.


Subject(s)
Gastrointestinal Microbiome , Schistosomiasis japonica , Case-Control Studies , Humans , Liver Cirrhosis/complications , RNA, Ribosomal, 16S , Schistosomiasis japonica/complications
16.
ACS Nano ; 15(3): 5534-5544, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33625825

ABSTRACT

Ultratrace quantitative detection based on fluorescence is highly desirable for many important applications such as environmental monitoring or disease diagnosis, which however has remained a great challenge because of limited and irregular fluorescence responses to analytes at ultralow concentrations. Herein the problem is circumvented via local enrichment and detection of analytes within a microsensor, that is, photonic porous microspheres grafted with aggregation-induced emission gens (AIEgens). The obtained microspheres exhibit dual structural and molecular functions, namely, bright structural colors and strong fluorescence. Large fluorescence quenching induced by nitrophenol compounds in an aqueous environment is observed at ultralow concentrations (10-12-10-8 mol/L), enabling quantitative detection at a ppb level (ng/L). This is achieved within a porous structure with good connectivity between the nanopores to improve analyte diffusion, an internal layer of poly(ethylene oxide) (PEO) for analyte enrichment via hydrogen bonding, and homogeneous distribution of AIEgens within the PEO layer for enhanced fluorescence quenching. The fluorescent porous microspheres can be readily obtained in a single step templated by well-ordered water-in-oil-in-water double emulsion droplets with AIE amphiphilic bottlebrush block copolymers as the effective stabilizer.


Subject(s)
Polyethylene Glycols , Polymers , Emulsions , Fluorescence , Microspheres
17.
BMC Neurol ; 21(1): 39, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509130

ABSTRACT

BACKGROUND: Ramsay Hunt syndrome (RHS) is caused by a reactivation of varicella-zoster virus (VZV) infection, and it is characterized by the symptoms of facial paralysis, otalgia, auricular rash, and/or an oral lesion. Elderly patients or immunocompromised patients, deep pain at the initial visit and no prompt treatment are significant predictors of postherpetic neuralgia (PHN). When PHN occurs, especially involved cranial polyneuropathy, multiple modalities should be administered for patients with the intractable PHN. The use of thermography in the follow-up of PHN secondary to RHS with multicranial nerve involvement has not yet been described yet in the literature. CASE PRESENTATION: The patient was a 78-year-old man with the chief complaint of a 3-month history of PHN secondary to RHS with polycranial nerve (V, VII, VIII, and IX) involvement. Multimodality therapy with oral gabapentin, pulsed radiofrequency (PRF) application to the Gasserian ganglion for pain in the trigeminal nerve region, linear-polarized near-infrared light irradiation for pain in the facial nerve region, and 2% lidocaine spray for pain in the glossopharyngeal nerve region was used to the treat patient, and follow-up evaluations included thermography. This comprehensive treatment obviously improved the quality of life, resulting in considerable pain relief, as indicated by a decrease in the numerical rating scale (NRS) score from 9 to 3 and a decrease in thermal imaging temperature from higher to average temperature on the ipsilateral side compared with the contralateral side. Lidocaine spray on the tonsillar branches of the glossopharyngeal nerve resulted in an improvement in odynophagia, and the NRS score decreased from 9 to 0 for glossopharyngeal neuralgia after three applications. CONCLUSION: Although the use of thermography in the follow-up of RHS with multiple cranial nerve (V, VII, VIII, and IX) involvement is very rare, in this patient, thermal imaging showed the efficacy of combination therapy (oral gabapentin, 2% lidocaine sprayed, PRF application and linear-polarized near-infrared light irradiation) and that is a good option for treatment.


Subject(s)
Herpes Zoster Oticus/complications , Herpes Zoster Oticus/diagnosis , Neuralgia, Postherpetic/diagnosis , Neuralgia, Postherpetic/etiology , Thermography/methods , Aged , Analgesics/therapeutic use , Anesthetics, Local/therapeutic use , Follow-Up Studies , Gabapentin/therapeutic use , Humans , Lidocaine/therapeutic use , Male , Neuralgia, Postherpetic/therapy , Phototherapy/methods , Pulsed Radiofrequency Treatment/methods
18.
J Phys Condens Matter ; 32(43): 435602, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32604083

ABSTRACT

We present an exact solution of the continuum Bogolyubov-de-Gennes Hamiltonian for Majorana bound states (MBSs) generated in a superconductor-semiconductor hybrid topological nanowire. The full energy spectra that include the band states and in-gap states could be obtained. We show that for relatively short wire length, the zero energy mode could be induced even in the topological trivial regime, which also indicates oscillatory dependence on the chemical potential. With the increase of the Zeeman field, the MBSs are almost fully spin-polarized and do not localize at the wire ends gradually. We also extend our discussion to the property of Majorana modes in an inhomogeneous nanowire, in which a local gate voltage is applied to one end of the nanowire. It is found that the local potential barrier or well could modulate the Majorana energy splitting periodically. The leakage of MBSs to the potential region is exponentially suppressed for the barrier case. A potential well could induce near-zero-energy bound states and these states merge with MBSs, leading to the delocalization of MBSs. In the potential well region, both the spin-up and spin-down components of the trivial states account for a significant proportion, which can be detected experimentally.

19.
Addict Biol ; 25(2): e12736, 2020 03.
Article in English | MEDLINE | ID: mdl-30788886

ABSTRACT

Cocaine is a strong central nervous system stimulant, which can induce drug addiction. Previous studies have reported that cocaine-induced autophagy is involved in neuroinflammation and cell death. However, the role of autophagy in psychomotor sensitivity to cocaine has not been explored. Here, we reported that D1 receptor -CaMKII-AMPK-FoxO3a signaling pathway was involved in acute cocaine application-induced autophagy in the nucleus accumbens (NAc) both in vitro and in vivo. Furthermore, we found that knockdown of the ATG5 gene in the NAc augmented behavioral response to cocaine, and induction of autophagy in the NAc with rapamycin attenuated cocaine-induced behavioral response, which was coincident with the alterations of dendritic spine density in neurons of NAc. These results suggest that cocaine exposure leads to the induction of autophagy, which is a protective mechanism against behavioral response to cocaine of male mice.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Behavior, Animal/drug effects , Cocaine-Related Disorders/prevention & control , Cocaine/pharmacology , Nucleus Accumbens/metabolism , Animals , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/physiopathology , Disease Models, Animal , Dopamine Uptake Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/drug effects
20.
Langmuir ; 35(47): 15017-15028, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31638399

ABSTRACT

The behavior of hydrophilic micron particles impacting on the gas-liquid interface has been further experimentally studied using a high-speed camera at different surface tensions and dynamic viscosities of liquids. The results show that the impact behavior exhibits suspension and submergence modes, whose boundary cannot be clearly identified because the overlap between the impact velocity ranges occurs because of the unstable pinning of the three-phase contact line on the surface of hydrophilic particles. The liquid properties have little effect on the wettability of hydrophilic particles but greatly influence the hydrodynamic and capillary force exerted on the particles, leading to the expansion of the suspension mode range. In addition, the penetration probability changes little with the decrease in surface tension, while it significantly reduces with the increase in dynamic viscosity. A penetration probability model is predicted as an exponential function of the inertial and supporting forces, and the experimental values agree well with the predicted values. The outcomes of this research will be helpful for understanding the mechanism of particle-interface interaction and providing guidance for enhancing the separation of hydrophilic fine ash via a bubble scrubbing system.

SELECTION OF CITATIONS
SEARCH DETAIL
...