Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Inorg Chem ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305308

ABSTRACT

The electroreduction of CO2 to valuable fuels or high-value chemicals by using sustainable electric energy provides a promising strategy for solving environmental problems dominated by the greenhouse effect. Copper-based materials are the only catalysts that can convert CO2 into multicarbon products, but they are plagued by high potential, low selectivity, and poor stability. The key factors to optimize the conversion of CO2 into multicarbon products are to improve the adsorption capacity of intermediates on the catalyst surface, accelerate the hydrogenation step, and improve the C-C coupling efficiency. Herein, we successfully doped Lewis acid Mg into Cu-based materials using a simple liquid-phase chemical method. In situ Raman and FT-IR tracking show that the Mg site enhances the surface coverage of the *CO intermediate, simultaneously promoting water dissociation. Under an industrial current density of 0.7 A cm-2, the FEC2+ reaches 73.9 ± 3.48% with remarkable stability. Density functional theory studies show that doping the Lewis acid Mg site increases the coverage of *CO and accelerates the splitting of water, thus promoting the C-C coupling efficiency, reducing the reaction energy barrier, and greatly improving the selectivity of C2+ products.

2.
Sci Rep ; 14(1): 21969, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304669

ABSTRACT

This research aims to explore more efficient machine learning (ML) algorithms with better performance for short-term forecasting. Up-to-date literature shows a lack of research on selecting practical ML algorithms for short-term forecasting in real-time industrial applications. This research uses a quantitative and qualitative mixed method combining two rounds of literature reviews, a case study, and a comparative analysis. Ten widely used ML algorithms are selected to conduct a comparative study of gas warning systems in a case study mine. We propose a new assessment visualization tool: a 2D space-based quadrant diagram can be used to visually map prediction error assessment and predictive performance assessment for tested algorithms. Overall, this visualization tool indicates that LR, RF, and SVM are more efficient ML algorithms with overall prediction performance for short-term forecasting. This research indicates ten tested algorithms can be visually mapped onto optimal (LR, RF, and SVM), efficient (ARIMA), suboptimal (BP-SOG, KNN, and Perceptron), and inefficient algorithms (RNN, BP_Resilient, and LSTM). The case study finds results that differ from previous studies regarding the ML efficiency of ARIMA, KNN, LR, LSTM, and SVM. This study finds different views on the prediction performance of a few paired algorithms compared with previous studies, including RF and LR, SVM and RF, KNN and ARIMA, KNN and SVM, RNN and ARIMA, and LSTM and SVM. This study also suggests that ARIMA, KNN, LR, and LSTM should be investigated further with additional prediction error assessments. Overall, no single algorithm can fit all applications. This study raises 20 valuable questions for further research.

3.
Virus Res ; : 199465, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306245

ABSTRACT

This study aims to screen and identify linear B-cell epitopes on the structural proteins of African Swine Fever Virus (ASFV) to assist in the development of peptide-based vaccines. In experiments, 66 peptides of 12 structural proteins of ASFV were predicted as potential linear B-cell epitopes using bioinformatics tools and were designed; the potential epitope proteins carried the GST tag were expressed, purified, and subjected to antigenicity analysis with porcine antiserum against ASFV, and further identified based on their immunogenicity in mice. A total of 22 potential linear B-cell epitopes showed immunoreactivity and immunogenicity. Of these epitopes, 13 epitopes were firstly identified including 4 epitopes located in p72 (352-363, 416-434, 424-439, 496-530 aa), 3 epitopes located in pE248R (121-136, 138-169, 158-185 aa), and only one epitope of each protein of pH108R (33-46 aa), p17 (63-86 aa), pE120R (65-117 aa), pE199L (175-189 aa), p12 (36-56 aa) as well as pB438L (211-230 aa). Notably, the immunoreactivity of the epitopes from 63-86 aa of p17 and the 65-117 aa of pE120R were the highest amongst identified epitopes, while the immunogenicity of epitopes from the 36-56 aa of p12, the 211-230 aa of pB438L, the 352-363 aa of p72 and the 63-86 aa of p17 were the best strong. The other 9 epitopes are partly overlapped with previous researches. These epitopes identified here will further enrich the database of ASFV epitope, as well as help to develop safe, effective epitope-based ASF vaccines and ASF diagnostic reagents.

4.
Mass Spectrom Rev ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300771

ABSTRACT

The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.

5.
Npj Imaging ; 2(1): 20, 2024.
Article in English | MEDLINE | ID: mdl-39036554

ABSTRACT

The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.

6.
Genes (Basel) ; 15(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39062612

ABSTRACT

The Whirly (WHY) gene family, functioning as transcription factors, plays an essential role in the regulation of plant metabolic responses, which has been demonstrated across multiple species. However, the WHY gene family and its functions in soybean remains unclear. In this paper, we conducted genome-wide screening and identification to characterize the WHY gene family. Seven WHY members were identified and randomly distributed across six chromosomes. The phylogenetic evolutionary tree of WHY genes in soybean and other species was divided into five clades. An in-depth analysis revealed that segmental duplications significantly contributed to the expansion of GmWHYs, and the GmWHY gene members may have experienced evolutionary pressure for purifying selection in soybeans. The analysis of promoter Cis-elements in GmWHYs suggested their potential significance in addressing diverse stress conditions. The expression patterns of GmWHYs exhibited tissue-specific variations throughout the different stages of soybean development. Additionally, six GmWHY genes exhibited different responses to low phosphate stress. These findings will provide a theoretical basis and valuable reference for the future exploration of WHY gene function.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Multigene Family , Phosphates , Phylogeny , Plant Proteins , Stress, Physiological , Glycine max/genetics , Glycine max/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphates/metabolism , Genome, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Evolution, Molecular
7.
Chem Sci ; 15(28): 10858-10866, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027287

ABSTRACT

Reducing carbon dioxide (CO2) to high value-added chemicals using renewable electricity is a promising approach to reducing CO2 levels in the air and mitigating the greenhouse effect, which depends on high-efficiency electrocatalysts. Copper-based catalysts can be used for electroreduction of CO2 to produce C2+ products with high added value, but suffer from poor stability and low selectivity. Herein, we propose a strategy to enhance the field effect by varying the cubic corner density on the surface of Cu2O microspheres for improving the electrocatalytic performance of CO2 reduction to C2+ products. Finite element method (FEM) simulation results show that the high density of cubic corners helps to enhance the local electric field, which increases the K+ concentration on the catalyst surface. The results of CO2 electroreduction tests show that the FEC2+ of the Cu2O catalyst with high-density cubic corners is 71% at a partial current density of 497 mA cm-2. Density functional theory (DFT) calculations reveal that Cu2O (111) and Cu2O (110) can effectively reduce the energy barrier of C-C coupling and improve the FEC2+ at high K+ concentrations relative to Cu2O (100). This study provides a new perspective for the design and development of efficient CO2RR catalysts.

8.
Shanghai Kou Qiang Yi Xue ; 33(2): 180-185, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39005096

ABSTRACT

PURPOSE: To investigate the efficacy of a modified maxillary protraction appliance in patients of skeletal Class Ⅲ with crowding. METHODS: Forty patients with skeletal Class Ⅲ malocclusion were divided into two groups, with 20 patients in each group. The experimental group had molar in a neutral or distal relationship and applied a modified maxillary protraction appliance, while the control group had molar mesial relationship and applied a conventional maxillary protraction appliance. Lateral cephalometric radiographs were taken before and after treatment in both groups for comparison. SPSS 22.0 software package was used for data analysis. RESULTS: The angle measurements taken before and after treatment showed a significant increase in SNA, ANB, SN-MP and U4-SN(P<0.01), while SNB decreased(P<0.01) in both groups. SN-OL changes were statistically different before and after treatment in the experimental group(P<0.05). The sagittal measurements before and after treatment in both groups showed significant alterations in all(P<0.05) but the length of the maxillary arch in both groups. For vertical measurements, U1-PP, L1-MP, U4-SN, U6-SN, and ANS-ME all increased (P<0.05), while the changes of U4-PP and U6-PP in the two groups before and after treatment were statistically different(P<0.05). Compared with the control group, the experimental group had a significantly increased maxillary arch length, a more remote location at U6, and a less variable molar relationship after treatment(P<0.01). The two groups showed a variable amount of cephalometric measurements before and after treatment: the experimental group had a significant increase in maxillary arch length, a more remote position at U6, and a smaller change in molar relationship compared to the control group(P<0.01). CONCLUSIONS: The modified maxillary protraction appliance showed good results for maxillary protraction and pushing the molar distally in patients with skeletal Class Ⅲ with crowding at neutral or distal molar relationship.


Subject(s)
Cephalometry , Malocclusion, Angle Class III , Maxilla , Humans , Malocclusion, Angle Class III/therapy , Malocclusion/therapy
9.
Toxicol Sci ; 201(1): 1-13, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38867691

ABSTRACT

Hexavalent chromium [Cr(VI)] is an established human lung carcinogen, but the carcinogenesis mechanism is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driver of Cr(VI)-induced lung cancer. Unrepaired DNA double-strand breaks are the underlying cause, and homologous recombination repair is the primary mechanism preventing Cr(VI)-induced DNA breaks from causing chromosome instability. Cell culture studies show acute Cr(VI) exposure causes DNA double-strand breaks and increases homologous recombination repair activity. However, the ability of Cr(VI)-induced DNA breaks and repair impact has only been reported in cell culture studies. Therefore, we investigated whether acute Cr(VI) exposure could induce breaks and homologous recombination repair in rat lungs. Male and female Wistar rats were acutely exposed to either zinc chromate particles in a saline solution or saline alone by oropharyngeal aspiration. This exposure route resulted in increased Cr levels in each lobe of the lung. We found Cr(VI) induced DNA double-strand breaks in a concentration-dependent manner, with females being more susceptible than males, and induced homologous recombination repair at similar levels in both sexes. Thus, these data show this driving mechanism discovered in cell culture indeed translates to lung tissue in vivo.


Subject(s)
Chromates , Chromium , DNA Breaks, Double-Stranded , Lung , Rats, Wistar , Recombinational DNA Repair , Animals , Female , DNA Breaks, Double-Stranded/drug effects , Male , Lung/drug effects , Lung/metabolism , Chromium/toxicity , Recombinational DNA Repair/drug effects , Rats , Chromates/toxicity , Zinc Compounds/toxicity
10.
Angew Chem Int Ed Engl ; 63(36): e202409020, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38899789

ABSTRACT

The strategy of integrating conformational isomerization donors and chiral acceptors in a single molecule was proposed to construct white circularly polarized luminescence (WCPL) materials in this work. Consequently, a pair of dual-emission enantiomers, namely (R/S)-DO-PTZ, were designed and synthesized, which displayed white emission with blue and yellow dual-emission bands in solution and solid films with Commission Internationale de l'Eclairage (CIE) coordinates of (0.30, 0.33) and (0.33, 0.35), respectively. Meanwhile, (R/S)-DO-PTZ exhibited a high PLQY of up to 67 % in doped films and clear mirror-image WCPL signals with a |glum| value of 3.0×10-3. Moreover, white circularly polarized electroluminescence (WCPEL) based on organic light-emitting diodes (OLEDs) with (R/S)-DO-PTZ as emitters were also achieved with CIE coordinates of (0.32, 0.37) and EQEmax of 4.7 %, representing the state-of-the-art level of white OLEDs based on single-molecule purely organic emitters. By optimizing the device structure, warm WCPEL devices were further obtained with a |gEL| value of 2.8×10-3, CIE coordinates of (0.37, 0.48) and EQEmax of up to 15.6 %. To our knowledge, this is the first report of CP-WOLEDs based on single-molecule purely organic emitters.

11.
Toxicol Appl Pharmacol ; 489: 117007, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901695

ABSTRACT

We are facing a rapidly growing geriatric population (65+) that will live for multiple decades and are challenged with environmental pollution far exceeding that of previous generations. Consequently, we currently have a poor understanding of how environmental pollution will impact geriatric health distinctly from younger populations. Few toxicology studies have considered age differences with geriatric individuals. Critically, all top ten most prevalent age-related diseases are linked to metal exposures. Hexavalent chromium [Cr(VI)] is a metal of major environmental health concern that can induce aging phenotypes and neurotoxicity. However, there are many knowledge gaps for Cr(VI) neurotoxicity, including how Cr(VI) impacts behavior. To address this, we exposed male rats across three ages (3-, 7-, and 18-months old) to Cr(VI) in drinking water (0, 0.05, 0.1 mg/L) for 90 days. These levels reflect the maximum contaminant levels determined by the World Health Organization (WHO) and the U.S. Environmental Protection Agency (US EPA). Here, we report how these Cr(VI) drinking water levels impacted rat behaviors using a battery of behavior tests, including grip strength, open field assay, elevated plus maze, Y-maze, and 3-chamber assay. We observed adult rats were the most affected age group and memory assays (spatial and social) exhibited the most significant effects. Critically, the significant effects were surprising as rats should be particularly resistant to these Cr(VI) drinking water levels due to the adjustments applied in risk assessment from rodent studies to human safety, and because rats endogenously synthesize vitamin C in their livers (vitamin C is a primary reducer of Cr[VI] to Cr[III]). Our results emphasize the need to broaden the scope of toxicology research to consider multiple life stages and suggest the current regulations for Cr(VI) in drinking water need to be revisited.


Subject(s)
Aging , Behavior, Animal , Chromium , Animals , Chromium/toxicity , Male , Behavior, Animal/drug effects , Rats , Neurotoxicity Syndromes/etiology , Maze Learning/drug effects , Age Factors , Drinking Water , Water Pollutants, Chemical/toxicity
12.
Angew Chem Int Ed Engl ; 63(37): e202410417, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38924241

ABSTRACT

The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.

13.
J Cancer Res Ther ; 20(4): 1334-1337, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38935575

ABSTRACT

INTRODUCTION: Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related deaths globally, with a five-year survival rate of only 5%. OBJECTIVES: Pancreatic ductal adenocarcinoma is often fatal because of the lack of specific early symptoms and effective early screening tools. Therefore, 80%-85% of patients are usually diagnosed in the advanced stages. This study aimed to investigate the analgesic effect of transcutaneous electrical acupoint stimulation in patients with advanced pancreatic cancer. METHODS: Eighty patients with advanced pancreatic cancer were recruited from the Integrative Medicine Department of our hospital between June 2017 and October 2018 and randomly divided into the experimental group ( n = 40) and the control group ( n = 40). The experimental group received transcutaneous electrical acupoint stimulation combined with analgesic medication for 3 consecutive days, while the control group received only analgesic medication. The pain scores of the two groups before and after intervention were compared. RESULTS: The mean pain severity score was significantly lower in the experimental group than in the control group on day 1 ( P < 0.001), day 2 ( P < 0.001), day 3 ( P = 0.005), and day 4 ( P = 0.043). CONCLUSION: Transcutaneous electrical acupoint stimulation therapy effectively alleviates the pain of patients with advanced pancreatic cancer with a high degree of safety and minimal adverse effects, and is worthy of clinical application.


Subject(s)
Acupuncture Points , Cancer Pain , Pain Management , Pancreatic Neoplasms , Transcutaneous Electric Nerve Stimulation , Humans , Female , Male , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/therapy , Middle Aged , Transcutaneous Electric Nerve Stimulation/methods , Pain Management/methods , Aged , Cancer Pain/therapy , Cancer Pain/etiology , Cancer Pain/diagnosis , Pain Measurement , Treatment Outcome , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/complications , Combined Modality Therapy
14.
HPB (Oxford) ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38789383

ABSTRACT

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.hpb.2024.04.011. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

15.
J Oral Rehabil ; 51(8): 1555-1565, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38736104

ABSTRACT

BACKGROUND: Obstructive sleep apnea hypopnea syndrome (OSAHS) is a serious and potentially life-threatening disease. Mandibular advancement device (MAD) has the characteristics of non-invasive, comfortable, portable and low-cost, making it the preferred treatment for mild-to-moderate OSAHS. Our previous studies found that abnormal contractility and fibre type distribution of the genioglossus could be caused by OSAHS. However, whether the mitochondria participate in these tissue changes is unclear. The effect of MAD treatment on the mitochondria of the genioglossus in OSAHS is also uncertain. OBJECTIVE: To examine the morphology and function of mitochondria from the genioglossus in a rabbit model of obstructive sleep apnea-hypopnea syndrome (OSAHS), as well as these factors after insertion of a mandibular advancement device (MAD). METHODS: Thirty male New Zealand white rabbits were randomised into three groups: control, OSAHS and MAD, with 10 rabbits in each group. Animals in Group OSAHS and Group MAD were induced to develop OSAHS by injection of gel into the submucosal muscular layer of the soft palate. The rabbits in Group MAD were fitted with a MAD. The animals in the control group were not treated. Further, polysomnography (PSG) and cone-beam computed tomography (CBCT) scan were used to measure MAD effectiveness. CBCT of the upper airway and PSG suggested that MAD was effective. Rabbits in the three groups were induced to sleep for 4-6 h per day for eight consecutive weeks. The genioglossus was harvested and detected by optical microscopy and transmission electron microscopy. The mitochondrial membrane potential was determined by laser confocal microscopy and flow cytometry. Mitochondrial complex I and IV activities were detected by mitochondrial complex assay kits. RESULTS: OSAHS-like symptoms were induced successfully in Group OSAHS and rescued by MAD treatment. The relative values of the mitochondrial membrane potential, mitochondrial complex I activity and complex IV activity were significantly lower in Group OSAHS than in the control group; however, there was no significant difference between Group MAD and the control group. The OSAHS-induced injury and the dysfunctional mitochondria of the genioglossus muscle were reduced by MAD treatment. CONCLUSION: Damaged mitochondrial structure and function were induced by OSAHS and could be attenuated by MAD treatment.


Subject(s)
Disease Models, Animal , Mandibular Advancement , Mitochondria , Sleep Apnea, Obstructive , Animals , Rabbits , Sleep Apnea, Obstructive/therapy , Sleep Apnea, Obstructive/physiopathology , Mandibular Advancement/instrumentation , Mandibular Advancement/methods , Male , Tongue/physiopathology , Tongue/pathology
16.
Gut Microbes ; 16(1): 2347722, 2024.
Article in English | MEDLINE | ID: mdl-38706205

ABSTRACT

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Subject(s)
Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
17.
Anal Chem ; 96(19): 7506-7515, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38690851

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Mass Spectrometry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/diagnosis , Humans , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Cross-Linking Reagents/chemistry , Protein Conformation , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/metabolism , Cognitive Dysfunction/metabolism
18.
HPB (Oxford) ; 26(7): 938-948, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705793

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is the second most common hepatic malignancy and has a poor prognosis. Surgical resection is the standard of care for patients with resectable disease, representing 30-40% of cases. Increasingly, neoadjuvant systemic therapy is being utilized in patients due to high-risk anatomic or biologic considerations. However, data on the clinical effect of this approach are limited. We performed a cohort study to evaluate the effect of neoadjuvant therapy in patients with oncologically high-risk iCCA. METHODS: iCCA patients (n = 181) between the years 2014-2020 were reviewed for clinical, histopathologic, treatment, and outcome-related data. Tumor regression grade was scored per CAP criteria for gastrointestinal carcinomas. RESULTS: 47 iCCA patients received neoadjuvant therapy and 72 did not. Neoadjuvant treatment led to objective response and tumor regression by CAP score. After adjustment for age, clinical stage, and tumor size, the outcomes of patients who had neoadjuvant therapy followed by surgery were not significantly different from those patients who had surgery first. DISCUSSION: In conclusion, neoadjuvant therapy in iCCA facilitated surgical care. The progression-free and overall survival for surgical patients with and without neoadjuvant therapy were not significantly different suggesting this approach needs further exploration as an effective treatment paradigm.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Neoadjuvant Therapy , Humans , Cholangiocarcinoma/therapy , Cholangiocarcinoma/mortality , Cholangiocarcinoma/pathology , Cholangiocarcinoma/surgery , Bile Duct Neoplasms/therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/surgery , Male , Female , Middle Aged , Aged , Retrospective Studies , Hepatectomy , Treatment Outcome
19.
Adv Mater ; 36(36): e2403549, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723270

ABSTRACT

It is a pressing need to develop new energy materials to address the existing energy crisis. However, screening optimal targets out of thousands of material candidates remains a great challenge. Herein, an alternative concept for highly effective materials screening based on dual-atom salphen catalysis units, is proposed and validated. Such an approach simplifies the design of catalytic materials and reforms the trial-and-error experimental model into a building-blocks-assembly like process. First, density functional theory (DFT) calculations are performed on a series of potential catalysis units that are possible to synthesize. Then, machine learning (ML) is employed to define the structure-performance relationship and acquire chemical insights. Afterward, the projected catalysis units are integrated into covalent organic frameworks (COFs) to validate the concept Electrochemical tests confirming that Ni-SalphenCOF and Co-SalphenCOF are promising conductive agent-free oxygen evolution reaction (OER) catalysts. This work provides a fast-tracked strategy for the design and development of functional materials, which serves as a potentially workable framework for seamlessly integrating DFT calculations, ML, and experimental approaches.

20.
Food Funct ; 15(9): 4862-4873, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38587236

ABSTRACT

Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.


Subject(s)
Bifidobacterium bifidum , Gastrointestinal Microbiome , Immunoglobulin A , Probiotics , Animals , Female , Male , Mice , Bifidobacterium bifidum/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestines/immunology , Intestines/microbiology , Mice, Inbred BALB C , Probiotics/pharmacology , Probiotics/administration & dosage , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL