Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
AIDS ; 33(2): 199-209, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30562171

ABSTRACT

OBJECTIVE: To determine whether latency can be established and reversed in both proliferating and nonproliferating CD4+ T cells in the same model in vitro. METHODS: Activated CD4+ T cells were infected with either a nonreplication competent, luciferase reporter virus or wild-type full-length enhanced green fluorescent protein (EGFP) reporter virus and cultured for 12 days. The cells were then sorted by flow cytometry to obtain two distinct T-cell populations that did not express the T-cell activation markers, CD69, CD25 and human leukocyte antigen (HLA)-DR: CD69CD25HLA-DR small cells (nonblasts) that had not proliferated in vitro following mitogen stimulation and CD69CD25HLA-DR large cells (which we here call transitional blasts) that had proliferated. The cells were then reactivated with latency-reversing agents and either luciferase or EGFP quantified. RESULTS: Inducible luciferase expression, consistent with latent infection, was observed in nonblasts and transitional blasts following stimulation with either phorbol-myristate-acetate/phytohemagglutinin (3.8 ±â€Š1 and 2.9 ±â€Š0.5 fold above dimethyl sulfoxide, respectively) or romidepsin (2.1 ±â€Š0.6 and 1.8 ±â€Š0.2 fold above dimethyl sulfoxide, respectively). Constitutive expression of luciferase was higher in transitional blasts compared with nonblasts. Using wild-type full-length EGFP reporter virus, inducible virus was observed in nonblasts but not in transitional blasts. No significant difference was observed in the response to latency-reversing agents in either nonblasts or transitional blasts. CONCLUSION: HIV latency can be established in vitro in resting T cells that have not proliferated (nonblasts) and blasts that have proliferated (transitional blasts). This model could potentially be used to assess new strategies to eliminate latency.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Cell Proliferation , HIV/physiology , Virus Latency , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/classification , Cells, Cultured , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Interleukin-2 Receptor alpha Subunit/analysis , Lectins, C-Type/analysis , Staining and Labeling
2.
Arthritis Rheumatol ; 70(10): 1597-1609, 2018 10.
Article in English | MEDLINE | ID: mdl-29687651

ABSTRACT

OBJECTIVE: Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of systemic lupus erythematosus (SLE). While multiple studies support the notion of a dependency on TLR-7 for disease development, genetic ablation of TLR-9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. This study was undertaken to examine the suppressive role of TLR-9 in the development of severe lupus in a mouse model. METHODS: We crossed Sle1 lupus-prone mice with TLR-9-deficient mice to generate Sle1TLR-9-/- mice. Mice ages 4.5-6.5 months were evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total Ig profiles, kidney dendritic cell (DC) function, and TLR-7 protein expression. Mice ages 8-10 weeks were used for functional B cell studies, Ig profiling, and determination of TLR-7 expression. RESULTS: Sle1TLR-9-/- mice developed severe disease similar to TLR-9-deficient MRL and Nba2 models. Sle1TLR-9-/- mouse B cells produced more class-switched antibodies, and the autoantibody repertoire was skewed toward RNA-containing antigens. GN in these mice was associated with DC infiltration, and purified Sle1TLR-9-/- mouse renal DCs were more efficient at TLR-7-dependent antigen presentation and expressed higher levels of TLR-7 protein. Importantly, this increase in TLR-7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. CONCLUSION: The increase in TLR-7-reactive immune complexes, and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9-/- mice.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/deficiency , Up-Regulation/immunology , Animals , Antigens/immunology , Disease Models, Animal , Mice , RNA/immunology , Toll-Like Receptor 9/immunology
3.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29643247

ABSTRACT

HIV infection requires lifelong antiretroviral therapy because of the persistence of latently infected CD4+ T cells. The induction of virus expression from latently infected cells occurs following T cell receptor (TCR) activation, but not all latently infected cells respond to TCR stimulation. We compared two models of latently infected cells using an enhanced green fluorescent protein (EGFP) reporter virus to infect CCL19-treated resting CD4+ (rCD4+) T cells (preactivation latency) or activated CD4+ T cells that returned to a resting state (postactivation latency). We isolated latently infected cells by sorting for EGFP-negative (EGFP-) cells after infection. These cells were cultured with antivirals and stimulated with anti-CD3/anti-CD28, mitogens, and latency-reversing agents (LRAs) and cocultured with monocytes and anti-CD3. Spontaneous EGFP expression was more frequent in postactivation than in preactivation latency. Stimulation of latently infected cells with monocytes/anti-CD3 resulted in an increase in EGFP expression compared to that for unstimulated controls using the preactivation latency model but led to a reduction in EGFP expression in the postactivation latency model. The reduced EGFP expression was not associated with reductions in the levels of viral DNA or T cell proliferation but depended on direct contact between monocytes and T cells. Monocytes added to the postactivation latency model during the establishment of latency reduced spontaneous virus expression, suggesting that monocyte-T cell interactions at an early time point postinfection can maintain HIV latency. This direct comparison of pre- and postactivation latency suggests that effective strategies needed to reverse latency will depend on how latency is established.IMPORTANCE One strategy being evaluated to eliminate latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) is to activate HIV expression or production with the goal of inducing virus-mediated cytolysis or immune-mediated clearance of infected cells. The gold standard for the activation of latent virus is T cell receptor stimulation with anti-CD3/anti-CD28. However, this stimulus activates only a small proportion of latently infected cells. We show clear differences in the responses of latently infected cells to activating stimuli based on how latent infection is established, an observation that may potentially explain the persistence of noninduced intact proviruses in HIV-infected individuals on ART.


Subject(s)
CD4-Positive T-Lymphocytes/virology , DNA, Viral/metabolism , HIV Infections/virology , HIV-1/physiology , Virus Activation , Virus Latency , Virus Replication , Cells, Cultured , DNA, Viral/genetics , Green Fluorescent Proteins/metabolism , Humans , Lymphocyte Activation , Virus Integration
4.
Nat Immunol ; 17(10): 1187-96, 2016 10.
Article in English | MEDLINE | ID: mdl-27487330

ABSTRACT

During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell-derived malignancies.


Subject(s)
Arenaviridae Infections/immunology , B-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , HIV/immunology , Lymphocytic choriomeningitis virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Germinal Center/pathology , Germinal Center/virology , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Retrovirology ; 13(1): 49, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27459960

ABSTRACT

BACKGROUND: Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4(+) T cells. We previously reported that HIV latency could be established in resting CD4(+) T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. RESULTS: In resting CD4(+) T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4(+) T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4(+) T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1-115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7-11, p > 0.05) in fully activated CD4(+) T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4(+) T cells. CONCLUSIONS: HIV integration in CCL19-treated resting CD4(+) T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Chemokine CCL19/pharmacology , NF-kappa B/metabolism , Receptors, CCR/genetics , Virus Integration , Virus Latency , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/physiology , Gene Expression Regulation, Viral/drug effects , HIV Integrase/genetics , HIV-1/enzymology , HIV-1/physiology , Humans , NF-kappa B/genetics , Receptors, CCR/metabolism , Signal Transduction/drug effects , Virus Integration/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
6.
J Neurovirol ; 22(4): 455-63, 2016 08.
Article in English | MEDLINE | ID: mdl-26727904

ABSTRACT

Despite the success of combination antiretroviral therapy (cART), HIV persists in long lived latently infected cells in the blood and tissue, and treatment is required lifelong. Recent clinical studies have trialed latency-reversing agents (LRA) as a method to eliminate latently infected cells; however, the effects of LRA on the central nervous system (CNS), a well-known site of virus persistence on cART, are unknown. In this study, we evaluated the toxicity and potency of a panel of commonly used and well-known LRA (panobinostat, romidepsin, vorinostat, chaetocin, disulfiram, hexamethylene bisacetamide [HMBA], and JQ-1) in primary fetal astrocytes (PFA) as well as monocyte-derived macrophages as a cellular model for brain perivascular macrophages. We show that most LRA are non-toxic in these cells at therapeutic concentrations. Additionally, romidepsin, JQ-1, and panobinostat were the most potent at inducing viral transcription, with greater magnitude observed in PFA. In contrast, vorinostat, chaetocin, disulfiram, and HMBA all demonstrated little or no induction of viral transcription. Together, these data suggest that some LRA could potentially activate transcription in latently infected cells in the CNS. We recommend that future trials of LRA also examine the effects of these agents on the CNS via examination of cerebrospinal fluid.


Subject(s)
HIV-1/drug effects , Histone Deacetylase Inhibitors/pharmacology , Neurons/drug effects , Virus Activation/drug effects , Virus Latency/drug effects , Virus Replication/drug effects , Acetamides/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/virology , Azepines/pharmacology , Cell Line , Cell Survival/drug effects , Depsipeptides/pharmacology , Disulfiram/pharmacology , Fetus , HIV-1/genetics , HIV-1/metabolism , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , Neurons/metabolism , Neurons/virology , Panobinostat , Piperazines/pharmacology , Primary Cell Culture , Transcription, Genetic/drug effects , Triazoles/pharmacology , Virus Activation/genetics , Virus Latency/genetics , Virus Replication/genetics , Vorinostat
7.
PLoS One ; 9(11): e113341, 2014.
Article in English | MEDLINE | ID: mdl-25409334

ABSTRACT

Histone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+) isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART). We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.


Subject(s)
HIV Infections/blood , HIV Long Terminal Repeat/drug effects , Histone Deacetylase Inhibitors/pharmacology , T-Lymphocytes/virology , Adult , Aged , Anti-HIV Agents/therapeutic use , Benzamides/pharmacology , Cell Line , HIV Infections/drug therapy , HIV Infections/virology , HeLa Cells , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Observational Studies as Topic , Panobinostat , Phylogeny , Pyridines/pharmacology , T-Lymphocytes/drug effects , Vorinostat , tat Gene Products, Human Immunodeficiency Virus/pharmacology
8.
AIDS ; 27(18): 2853-62, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24189584

ABSTRACT

OBJECTIVES: To compare the potency, toxicity and mechanism of action of multiple histone deacetylase inhibitors (HDACi) in activating HIV production from latency. DESIGN: In-vitro analysis of HDACi in a primary T-cell model of HIV latency and latently infected cell lines. METHODS: Latently infected chemokine ligand 19 (CCL19)-treated CD4⁺ T cells and the latently infected cell lines ACH2 and J-Lat were treated with a panel of HDACi, including entinostat, vorinostat, panonbinostat and MCT3. Viral production and cell viability were compared. Expression of cellular HDACs was measured by western blot and PCR. Association of HDACs with the HIV long-terminal repeat (LTR) using latently infected CCL19-treated primary CD4⁺ T cells in the presence and absence of specific HDACi was determined by chromatin immunoprecipitation (ChIP). RESULTS: We demonstrated considerable variation in the potency and toxicity of HDACi in latently infected primary CD4⁺ T cells and cell lines. All HDACi tested activated HIV production in latently infected primary T cells with greatest potency demonstrated with entinostat and vorinostat and greatest toxicity with panobinostat. Following the addition of HDACi in vitro, there were no changes in markers of T-cell activation or expression of the HIV coreceptors chemokine (C-X-C motif) receptor 4 (CXCR4) or chemokine (C-C motif) receptor type 5 (CCR5). ChIP analysis of latently infected CCL19-treated primary CD4⁺ T cells showed binding by HDAC1, HDAC2 and HDAC3 to the LTR with removal of HDAC1 and HDAC2 following treatment with the HDACi vorinostat and HDAC1 only following treatment with entinostat. CONCLUSION: The HDACi entinostat, selective for inhibition of class I HDACs, induced virus expression in latently infected primary CD4⁺ T cells making this compound an attractive novel option for future clinical trials.


Subject(s)
Benzamides/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , HIV/physiology , Histone Deacetylase Inhibitors/pharmacology , Pyridines/pharmacology , Virus Latency/drug effects , Virus Replication/drug effects , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Humans , Polymerase Chain Reaction
9.
PLoS One ; 7(3): e33478, 2012.
Article in English | MEDLINE | ID: mdl-22479404

ABSTRACT

The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1ß, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1ß and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.


Subject(s)
Cytokines/biosynthesis , Monocytes/immunology , Monocytes/metabolism , Phagocytosis/immunology , Receptors, Immunologic/metabolism , Cells, Cultured , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Leukocytes/metabolism , Lipopolysaccharides/immunology , Protein Binding/immunology , Receptors, Immunologic/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
10.
J Infect Dis ; 202(12): 1855-65, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21050118

ABSTRACT

BACKGROUND: Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species have been implicated in the initiation of gastrointestinal diseases. In the present study, we investigated the interaction between these bacteria and the human intestinal epithelium and immune cells. METHODS: The ability of C. concisus, Campylobacter showae, Campylobacter hominis, and Bacteroides ureolyticus to invade epithelial cells was examined using scanning electron microscopy and gentamicin protection assays. Proinflammatory cytokines generated by epithelial and immune cells in response to these bacteria were determined by enzyme-linked immunosorbent assay. Ussing Chamber, immunofluorescent stain, and Western blot were used to further elucidate the impact of C. concisus on intestinal barrier integrity and functions. RESULTS: Attachment of non-C. jejuni Campylobacter species to Caco-2 or HT-29 cells was mediated by flagellum-dependent and/or -independent processes. C. concisus was able to invade Caco-2 cells, generate a membrane-ruffling effect on the epithelial surface on entry, and damage epithelial barrier functions by preferential attachment to the cell-cell junctions. Proinflammatory cytokine profiles exhibited by epithelial cells, monocytes, and macrophages in response to C. concisus and other non-C. jejuni Campylobacter species were species and strain specific. CONCLUSIONS: These findings demonstrate that C. concisus and other non-C. jejuni Campylobacter species may play a role in initiating gastrointestinal diseases.


Subject(s)
Bacterial Adhesion , Campylobacter/immunology , Campylobacter/pathogenicity , Cytokines/metabolism , Epithelial Cells/microbiology , Host-Pathogen Interactions , Blotting, Western , Cell Line , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Microscopy, Electron, Scanning , Monocytes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...