Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 460(Pt 1): 140508, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39047494

ABSTRACT

This study aimed to clarify how microclimate diversity altered volatilomics in Cabernet Sauvignon grapes and wines. Four row-oriented vineyards were selected, and metabolites of grapes and wines were determined from separate canopy sides. Results showed that shaded sides received 59% of the solar radiation and experienced 55% of the high-temperature days compared to the exposed sides on average. Grape primary metabolites were slightly affected by the canopy side. Herbaceous aromas were consistently more abundant in grapes and wines from shaded clusters. Heat-stressed canopy sides accelerated terpenoid loss and increased norisoprenoid levels in grapes, while ß-damascenone in north-side wines was 13%-32% higher than that in south-side wines of the east-west vineyard. The northeast-southwest vineyard showed the most notable variation in taste and aroma sensory scores, with four parameters significantly different. There were 32 aroma series identified in wines, and banana, pineapple, and strawberry odors were highly correlated with aroma sensory score.

2.
BMC Plant Biol ; 24(1): 258, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594637

ABSTRACT

BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.


Subject(s)
Vitis , Wine , Vitis/metabolism , Transcriptome , Anthocyanins/metabolism , Microclimate , Farms , Fruit , Wine/analysis
3.
Front Immunol ; 15: 1347112, 2024.
Article in English | MEDLINE | ID: mdl-38601164

ABSTRACT

Xanthelasma palpebrarum (XP) is the most common form of cutaneous xanthoma, with a prevalence of 1.1%~4.4% in the population. However, the cause of XP remains largely unknown. In the present study, we used Mendelian randomization to assess the genetic association between plasma lipids, metabolic traits, and circulating protein with XP, leveraging summary statistics from large genome-wide association studies (GWAS). Genetically predicted plasma cholesterol and LDL-C, but not HDL-C or triglyceride, were significantly associated with XP. Metabolic traits, including BMI, fasting glucose, type 2 diabetes, systolic and diastolic blood pressure, were not significantly associated with XP. Furthermore, we found genetically predicted 12 circulating proteins were associated with XP, including FN1, NTM, FCN2, GOLM1, ICAM5, PDE5A, C5, CLEC11A, CXCL1, CCL2, CCL11, CCL13. In conclusion, this study identified plasma cholesterol, LDL-C, and 12 circulating proteins to be putative causal factors for XP, highlighting the role of plasma cholesterol and inflammatory response in XP development.


Subject(s)
Diabetes Mellitus, Type 2 , Xanthomatosis , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Cholesterol , Xanthomatosis/genetics , Xanthomatosis/epidemiology , Membrane Proteins
4.
Front Plant Sci ; 15: 1356799, 2024.
Article in English | MEDLINE | ID: mdl-38533403

ABSTRACT

Kolor is a teinturier grape cultivar, that accumulates flavonoids in the skin and pulp. However, the concentrations and proportions of flavonoids in Kolor skin and pulp differ, suggesting tissue specificity in teinturier grapes. Light conditions significantly influence the evolution of flavonoids. Moreover, studies on the mechanisms governing flavonoid accumulation in light response sensitivity of teinturier grapes are limited. In the three consecutive years of study, the exposure of Kolor clusters was altered by bagging from pre-veraison to harvest. QqQ/MS and RT‒qPCR wereused to determine the individual anthocyanin contents and the relative gene expression. There was a significant decrease in the total anthocyanins and flavonols in the Kolor berries, with flavonols showing greater sensitivity to bagging. Bagging did not exert a consistent impact on the flavan-3-ols in Kolor berries. The sensitivities of anthocyanins in Kolor skin and pulp differed under light exclusion conditions. The concentration of trihydroxy-substituted anthocyanins in the skin decreased, while the proportion of dihydroxy-substituted anthocyanins in the pulp significantly increased, but the anthocyanin concentration in the pulp did not change significantly after bagging. The contents of malvidins and quercetins in the skin, and myricetins and quercetins in the pulp, were significantly reduced after bagging. The expression of flavonoid synthesis genes in Kolor skin and pulp was tissue-specific. After bagging, UFGT expression increased in the pulp and decreased in the skin. In addition, LDOX, FLS-1, CHI-1, CHI-2, F3H-1, F3H-2, and MYB4a exhibited sensitive light responses in both the skin and pulp. This study offers new insights into the regulation of flavonoids in Kolor grapes under light exclusion conditions.

5.
Food Chem X ; 20: 100939, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144755

ABSTRACT

Adding pomace or juice runoff during maceration is a traditional winemaking process. To mitigate the negative effects of rainfall during harvest and examine the effects of adjusting the pomace ratio during fermentation on the flavor profile of Marselan grape wines, the prefermentation addition of Petit Manseng grape pomace (PAP) and prefermentation juice runoff (PJR) was determined. The phenolic and volatile compounds were investigated using HPLC-MS and GC-MS. PAP enriched the flavanols and PJR enriched the pigment and copigment matrix. Approximate 10% increase in the ratio of pomace promoted the formation of anthocyanin derivatives. The increased pomace ratio reduced the concentration of volatile compounds without impacting the aroma quality. Sensory analysis revealed PAP wines scored higher for acidity and astringency and PJR wines scored higher for color. In conclusion, an appropriate increase in the pomace ratio of approximately 10% can enhance the color and mouthfeel of the wine while having a limited influence on aroma.

SELECTION OF CITATIONS
SEARCH DETAIL